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ABSTRACT 

Service-Oriented Architecture (SOA) is an emerging paradigm that 

has radically changed the way software applications are 

architected, designed and implemented. SOA allows developers to 

structure their systems as a set of ready-made, reusable and 

compostable services. The leading technology used today for 

implementing SOA is Web Services. Indeed, like all software, Web 

services are prone to change constantly to add new user 

requirements or to adapt to environment changes. Poorly planned 

changes may risk introducing antipatterns into the system. 

Consequently, this may ultimately leads to a degradation of 

software quality, evident by poor quality of service (QoS). In this 

paper, we introduce an automated approach to detect Web service 

antipatterns using genetic programming. Our approach consists of 

using knowledge from real-world examples of Web service 

antipatterns to generate detection rules based on combinations of 

metrics and threshold values. We evaluate our approach on a 

benchmark of 310 Web services and a variety of five types of Web 

service antipatterns. The statistical analysis of the obtained results 

provides evidence that our approach is efficient to detect most of 

the existing antipatterns with a score of 85% of precision and 87% 

of recall. 

Categories and Subject Descriptors 

D.2.7 [Distribution, Maintenance, and Enhancement]: Restruct-

uring, reverse engineering, and reengineering 

Keywords 

Web services, antipatterns, search-based software engineering. 

1. INTRODUCTION 
Service Oriented Architecture (SOA) has emerged as the next 

generation of software systems. As part of the service-oriented 

computing paradigm, SOA revolutionizes the process of 

developing and deploying distributed software applications as a set 

of reusable composable services [1]. SOA provides many 

architectural benefits including reusability, flexibility, adaptability, 

and maintainability [1]. This architectural style can be implemented 

utilizing a variety of SOA technologies, such as Web Services, 

OSGi, SCA, and REST. Today, Service-Based Systems (SBS) have 

become prevalent and omnipresent in our everyday life such as 

Facebook, Dropbox, Google Maps, PayPal, FedEx, and so on. 

Web services must be carefully designed and implemented to 

adequately fit in the required system’s design with high QoS [2]. 

Indeed, there is no generalized recipe for proper service design. A 

set of guiding quality principles for service-oriented design exist 

such as service flexibility, operability, composability, and loose 

coupling principles [1]. However, the design of services is 

influenced mostly on context and usage [3]. Even though the 

programmers are familiar with these principles, business factors 

such as deadline pressures may lead to violations of quality 

principles. The presence of programming patterns associated with 

bad design and bad programming practices, known as 

“antipatterns”, are an indication of such violations [4] [5].  

Common Web service antipatterns include the nanoservice, and 

multiservice. Nanoservice is an antipattern where a service is too 

fine-grained characterized with few low cohesive operations, and 

whose overhead (communications, maintenance, and so on) 

outweighs its utility [3]. In contrast, the multiservice antipattern 

describes about the other extreme, i.e., the largest service. 

Multiservice corresponds to a god service that contains a large 

number of very low cohesive operations related to different 

business logics. Nanoservice and multiservice antipatterns can 

cause many maintenance and evolution problems such as poor 

performance, fragmented logic, overhead, client breakages and 

unavailability.  

Consequently, there is a high need for efficient techniques that 

both Web service users and providers can use to detect and prevent 

antipatterns in their SBSs. Although there are several tools and 

techniques  to detect antipatterns and code-smells in object-oriented 

(OO) systems [6] [7] [8], Web service antipatterns detection is not 

mature enough to provide efficient detection techniques [9] [10]. 

Indeed, despite the importance and extensive usage of Web services 

in last years, no automated approach for the detection of such 

antipatterns in Web services has been proposed. 

In this paper, we introduce a novel automated approach for 

detecting Web service antipatterns. We propose a search-based 

approach to automatically infer antipattern detection rules from a 

base of real-world examples of Web service antipatterns. The 

problem is to find, from a large list of Web service metrics, the best 

combination of metrics and their appropriate threshold values, for 

each antipattern type. We thus express antipatterns detection as an 

optimization problem, using genetic programming (GP) to generate 

detection rules. A candidate detection rule is expressed as a 

combination of metrics and their appropriate threshold values; and 

should detect as much as possible the number of antipatterns from 

the base of examples. We present an empirical study to evaluate our 

approach on a benchmark composed of 310 Web services from six 

different application domains including 136 antipattern instances. 

We compare our approach to two other popular algorithms and 

random search. The statistical results reveal that our approach was 

significantly better than particle swarm optimization, simulated 
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annealing as well as random search with more than 85% of 

precision and 87% of recall. 

The remainder of this paper is organized as follows. Section 2 

describes the background and motivation challenges. Section 3 

introduces our search-based approach. In section 4, we present and 

discuss the validation results. Section 5 discusses the different 

threats to validity. Section 6 surveys the existing work. Finally, we 

conclude and outline our future research directions in section 7. 

2. BACKGROUND  
In this section, we provide a brief overview of SOA, Web services 

and Web service antipatterns. Then, we outline the different 

problems and challenges that motivate our approach. 

2.1 Definitions 
SOA is a logical way for designing complex distributed software 

systems using functionality implemented by third-party providers. 

In a SOA, the service requester satisfies its specific needs by using 

services offered by service providers, through published and 

discoverable interfaces.  

Web services is nowadays the fittest and popular technology to 

implement SOA [11]. According to the W3C (World Wide Web 

Consortium), a Web Service is defined as “a software application 

identified by a URI, whose interfaces and bindings are capable of 

being defined, described, and discovered as XML artefacts” [12]. 

Its interface is described as a WSDL (Web service Description 

Language) document that contains structured information about the 

Web service’s location, its offered operations and the input/output 

parameters, and so on. The aim of the Web services platform is to 

provide the required level of interoperability among different 

applications using predefined web standards.  

Antipatterns are symptoms of poor design and implementation 

practices that describe a bad solution to a recurring design problem. 

They often lead to negative effects on software quality for which  

maintenance and evolution become harder [13]. Software engineers 

often introduce antipatterns unintentionally during the initial design 

or during software development due to bad design decisions, 

ignorance or time pressure. Therefore, antipatterns should be 

detected and removed from the software design as early as possible. 

Table 1 summaries the common Web service antipatterns including 

multiservice, nanoservice, chatty service, data service, and 

ambiguous service. In this paper, We focus mainly on these five  

antipattern types in our experiments as they are the most frequently 

occurring ones in SBSs based on recent studies [10] [14] [15]. 

2.2 Web service antipatterns detection 

challenges 
The most challenging issues when detecting Web service 

antipatterns is how to find the best metrics that characterize such 

antipattern, how to find the appropriate threshold values for these 

metrics; and most importantly how to find the best combination of 

these metrics. Indeed, most of the existing works are limited to 

provide definitions to Web service antipatterns and/or characterize 

their common symptoms towards an antipattern catalog. However, 

automating the detection of such antipatterns is still a very 

challenging task. 

In recent approaches [10] [18] [19], Web service antipatterns 

detection relies on declarative rule specification using domain-

specific language (DSL). In these settings, rules are manually 

defined to identify the key symptoms that characterize a Web 

service antipattern using combinations of mainly quantitative 

(metrics), structural, and/or lexical information. However, in an 

exhaustive scenario, the number of possible antipatterns to 

manually characterize and formulate with rules can be very large. 

Unfortunately, it is very difficult to find a consensus to characterize 

and formulate such symptoms. Moreover, even when consensus is 

met, the same symptom could be associated to many antipattern 

types, which may compromise the precise identification of 

antipattern instances. Indeed, translating antipattern definitions 

from the natural language to metrics is still mainly a subjective task. 

That is, different antipatterns are characterized by the same metrics.  

Another very important issue is related to the definition of 

threshold values when dealing with quantitative information. 

Indeed, there is no general agreement on extreme manifestations of 

Web service antipatterns [16]. That is, for each antipattern, rules 

that are expressed in terms of metrics need substantial calibration 

efforts to find the right threshold value for each metric, above 

which an antipattern is said to be detected. Since there is no 

consensus in defining SOA antipatterns, different threshold values 

should be tested to find the best one. For instance, the multiservice 

detection involves information such as service size, number of 

operations, number of port types, and cohesion. Although we can 

measure the number of operations of a service, an appropriate 

threshold value is not trivial to define. A service considered large 

in a given context could be considered as normal in another. 

Furthermore, detecting Web service antipatterns is more 

complicated than OO ones. That is, Web service source code is 

located in the provider side, and clients could only access and 

invoke services through their interfaces described in WSDL 

documents. This makes the situation more difficult to assess, detect, 

and prevent badly designed Web service, i. e., antipatterns.   

2.3 Motivating examples 
The WSDL fragment below illustrates the salient aspects of a 

multiservice antipattern, in the form of a service interface. The core 

identifying aspect of a multiservice antipattern is that it implements 

multiple core business and/or technical abstractions with low 

operations cohesion. This is manifested at the service interface as 

Table 1. Web service antipattern definitions. 

Antipattern Definition 

Multiservice Also called god object Web service, represents a service implementing a multitude of methods related to different business and technical 

abstractions. This service aggregates too many methods into a single service, and it is not easily reusable because of the low cohesion of its 

methods and is often unavailable to end-users because it is overloaded [16]. 

Nanoservice is a too fine-grained service whose overhead (communications, maintenance, and so on) outweighs its utility. This antipattern refers to a small 

Web service with few operations implementing only a part of an abstraction. It often requires several coupled Web services to complete an 

abstraction, resulting in higher development complexity, reduced usability [16] 

Chatty Service represents an antipattern where a high number of operations, typically attribute-level setters or getters, are required to complete one abstraction. 
This antipattern may have many fine-grained operations, which degrades the overall performance with higher response time [9]. 

Data service an antipattern that contains typically accessor operations, i.e., getters and setters. In a distributed environment, some Web services may only 

perform some simple information retrieval or data access operations. A Data Web Service usually deals with very small messages of primitive 

types and may have high data cohesion [10]. 

Ambiguous 

Service 

is an antipattern where developers use ambiguous or meaningless names for denoting the main elements of interface elements (e.g., port-types, 

operations, and messages). Ambiguous names are not semantically and syntactically sound and affect the discoverability and the reusability of 

a Web service [17]. 

 



different public methods that involve different entities or 

abstractions. In this example, it can be seen that there are methods 

that operate on different core functionalities. For instance, the 

bookFlight() method used to book a flight trip, while the 

reserveHotel() method attempts to reserve the specified hotel room. 

Overall, this multiservice supports the functionalities flight, car and 

hotel booking, payment, invoice services, and so on. Each of these 

is a significant core business abstraction, and typically will have 

many associated methods. Therefore, while this example is 

simplified and is merely illustrative, in reality, a typical 

multiservice will include many methods related to each abstraction, 

resulting in a service with huge number of methods. 

On the other extreme, i. e., nanoservice, we consider the 

example of a Calculator service taken from real-world Web service 

provided by Apache Geronimo1. A basic calculator service would 

not be complicated; it supports several simple operations such as 

add, subtract, multiply, divide and other operations. The example 

of Apache Geronimo shows the WSDL file from the Apache 

Calculator service, which performs addition of two integers. This 

is a very fine-grained service as all it can do is accept two numbers 

and return the sum. However, there is a lot of code (and overhead) 

for this simple operation. As services are consumed over network 

(Internet, LAN), they might be bound by the limitations and costs 

incurred by communications over those networks (e.g., the time 

needed to send/receive messages) [3]. The problem becomes more 

disturbing when considering this level of granularity in other more 

complicated real-life services. 

For non-expert clients the line between nanoservices, 

multiservices and appropriately sized services is not obvious. In 

addition, even for service providers, service logics may look 

                                                                 

1https://cwiki.apache.org/confluence/display/GMOxDOC21/jaxws-

calculator+-+Simple+Web+Service+with+JAX-WS  

promising at design level, but can prove to be antipatterns when 

they are implemented. To make the situation worst, a 

comprehensive service contract does not guarantee that a service is 

not an antipattern. Thus, it is very important to provide efficient 

techniques to support both Web service clients and providers. 

To address or circumvent the above mentioned issues and 

challenges, we introduce a search-based approach to automatically 

derive Web service antipattern detection rules. 

3. APPROACH 
In this section, we describe our approach for Web service antipatt-

erns detection. The key idea is to see the detection problem as a 

search based combinatorial optimization problem to find the sought 

detection rules from a large list of possible metrics and thresholds. 

3.1 Approach overview 
Figure 1 provides a high-level overview of the approach proposed 

in this paper. Our approach uses knowledge from a base of 

examples that contains real instances of Web service antipatterns. 

These examples will serve to generate new Web service antipattern 

detection rules based on combinations of Web service metrics and 

threshold values. The detection rules are automatically derived by 

an optimization process that learns from the available examples.  

As shows in Figure 1, our approach takes as inputs a base (i.e., 

a set) of Web service antipattern examples and a set of Web service 

metrics. As output, our approach derives a set of detection rules. 

Using GP [20], our rules’ derivation process generates randomly, 

from a given list of metrics, a combination of metric/threshold for 

each antipattern type. Thus, the generation process can be viewed 

as a search-based combinatorial optimization to find the suitable 

combination of metrics/thresholds that best detect the antipattern 

instances in the base of examples. In other words, the best set of 

rules is the one that detects the maximum number of antipatterns in 

terms of precision and recall. 

The base of examples contains different Web service 

antipatterns from different application domains (e.g., weather, 

finance, shipping, etc.) that can be collected from different Web 

service search engines, such as eil.cs.txstate.edu/ServiceXplorer, 

and programmableweb.com, etc. These antipatterns were manually 

Table 2. List of used metrics. 

 Metric Description 

NPT Number of port-types 

NOD Number of operations declared 

NOPT Average number of operations in port-types 

NPO Average number of parameters in operations 

NCT Number of complex types 

NAOD Number of accessor operations declared 

NCTP Number of complex type parameters 

COUP Coupling 

COH Cohesion 

NOM Number of messages 

NST Number of primitive types 

ALOS Average length of operations signature 

ALPS Average length of port-types signature 

ALMS Average length of message signature 

RPT Ratio of primitive types over all defined types 

RAOD Ratio of accessor operations declared 

ANIPO Average number of input parameters in operations 

ANOPO Average number of output parameters in operations 

NPM Average number of parts per message 

AMTO Average number of meaningful terms in operation names 

AMTM Average number of meaningful terms in message names 

AMTP Average number of meaningful terms in port-type names 

 
 

<wsdl:definitions> 

    <wsdl:types> 

     ... 
    </wsdl:types> 

     ... 

    <wsdl:portType name="FlightPortType">      
        <wsdl:operation name="bookFlight"> 

            ... 

        </wsdl:operation> 
        <wsdl:operation name="reserveFlight"> 

            ... 

        </wsdl:operation> 

        <wsdl:operation name="cancelFlight"> 

         ... 

        </wsdl:operation> 

   </wsdl:portType> 

   <wsdl:portType name="OtherServicePortType"> 
        <wsdl:operation name="reserveCar"> 

            ... 

        </wsdl:operation> 

        <wsdl:operation name="cancelCar"> 

            ... 

        </wsdl:operation> 
        <wsdl:operation name="reserveHotel"> 

            ... 

        </wsdl:operation> 
        <wsdl:operation name="checkDates"> 

            ... 

        </wsdl:operation> 

        <wsdl:operation name="modifyBooking"> 

            ... 
        </wsdl:operation> 

        <wsdl:operation name="acceptPayment"> 

            ... 
        </wsdl:operation>  

        <wsdl:operation name="validateCredit"> 

            ... 
        </wsdl:operation> 

        <wsdl:operation name="generateInvoice"> 

            ... 
        </wsdl:operation> 

             ... 

    </wsdl:portType> 

 ... 

</wsdl:definitions> 



inspected and validated based on existing guidelines from the 

literature [3] [16]. During a training stage, these antipatterns are 

iteratively evaluated using rules generated by GP [20]. The process 

is driven by a fitness function that calculates the quality of each 

candidate solution (detection rule) by comparing the list of detected 

antipatterns with the expected ones from the base of examples.    

Our metric suite is based on a set of Web service metrics. Table 

1 summarizes the used metrics. The first fourteen metrics (NPT-

ALMS) are defined in the literature [5] [10] [21] [19]. We also 

adapted and defined eight other metrics (RPT-AMTP). The last 

three metrics, AMTO, AMTM, and AMTP, are implemented based 

on WordNet2, a widely used lexical database. Each operation, port-

type and message identifier is tokenized based on camel case 

splitter. Then, we assume that the more the extracted tokens exist 

in WordNet database, the more the identifier is meaningful, i.e., 

semantically and syntactically sound. 

As many metrics combinations are possible, the detection rules 

generation process is, by nature, a combinatorial optimization 

problem. The number of possible solutions quickly becomes huge 

as the number of metrics and possible threshold values increases. A 

deterministic search is not practical in such cases, and the use of 

heuristic search is warranted. The dimensions of the solution space 

are set by the metrics, their threshold values, and logical operations 

between them: union (metric1 OR metric2) and intersection 

(metric1 AND metric2). A solution is determined by assigning a 

threshold value to each metric. The search is guided by the quality 

of the solution according to the number of detected antipatterns in 

comparison to the expected ones form the base of examples. 

3.2 SBSE formulation 
Complex decision problems with multiple variables and large 

search spaces such as this are well-matched to search 

based software engineering (SBSE), which has proven good 

performance in providing decision support in several software 

engineering problems [22]. Our approach uses SBSE [22] [23], as 

it provides best practice to define a heuristic search algorithm, 

solution representation, fitness function, change operators, and so 

on [23]. In this section we describe our SBSE approach. 

3.2.1 Search algorithm 
As a search method, we employed a widely used computational 

search technique, GP [20], which have shown good performance in 

solving many software engineering problems [22]. GP takes as 

input a set of SOAP metrics and a set of Web service antipattern 

examples, and finds as output the optimal solution that corresponds 
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to a set of rules that should detect the antipattern instances in the 

base of examples. For more details about GP, interested readers can 

refer to [20]. In the following, we need to define problem-specific 

solution encoding, genetic operators and fitness function to ensure 

best performance. 

3.2.2 Solution representation 
Candidate solutions to the problem are antipattern detection rules. 

A solution is represented as a set of IF – THEN rules. A detection 

rule has the following structure:  

IF “Combination of metrics with their threshold values” THEN “antipattern type”  

The IF clause describes the conditions or situations under 

which an antipattern type is detected. These conditions correspond 

to logical expressions that combine some metrics and their 

threshold values using logic operators (AND, OR). If some of these 

conditions are satisfied by a Web service, then it is detected as the 

antipattern type figuring in the THEN clause of the rule. We will 

have as many rules as types of antipatterns to be detected. In our 

case, mainly for illustrative reasons, and without loss of generality, 

we focus on the detection of five common types, namely 

multiservice, nanoservice, dataservice, chatty service, and 

ambiguous service (cf. Table 1). For instance, let us consider the 

following detection rules, in the iteration i, and its interpretation: 

 
R1: IF (NOD(s)≥17 AND COH(s)≤0.43 AND NOPT(s)≥7.8) OR (NOD(s)≥24 

AND COH(s)≤0.39 AND NPT(s)≥2 AND NST(s)≥41 OR NCT(s)≥32) 

THEN MultiService(s) 

R2: IF (NCT(s)≤5 OR NST(s)≤8 AND NPT(s)≤2 AND NOD(s)≤5 AND 

COH(s)≥0.42) OR (NOPT(s)≤4.2 AND COUP(s)≥0.36 AND COH(s)≥0.39 

AND NOD(s)≤6 OR NPT(s)≤2) THEN NanoService(s) 

R3: IF ((ANIPO(s)≥4 OR ANOPO(s)≥4) AND (NCT(s)≥31 OR NOM(s)>=79) 

AND COH(s)≥0.31 AND NAOD(s)>=13) THEN DataService(s) 

R4: IF (NPT(s)≤3 AND NOD(s)≥10 AND RAOD(s)≥0.38 AND (NCT(s)≥15 OR 

ANOPO(s)≥8.1) AND (NOM(s)>=38 OR NPM(s)>=2.2)  AND 

COH(s)≤0.42) THEN ChattyService(s) 

R5: IF (ALOS(s)≤1.6 OR ALOS(s)≥4.9 AND AMTO(s)≤0.6 AND NIOP(s)≥4 

OR AMTM(s)≤0.52) THEN AmbiguousService(s) 

 

We encoded a solution as tree where each subtree represents a 

detection rules for a particular antipattern type. Figure 2 represents 

the correspondent tree for the multiservice antipattern, i.e., R1.  

 

Figure 2. Solution encoding for the multiservice antipattern. 

The initial population, composed by n solutions, was randomly 

obtained by assigning to each subtree m metrics ranging from 1 to 

nbMetrics (the number of considered metrics). For each metric we 

randomly assign a threshold value as defined in Section 3.1. 

3.2.3 Fitness function 
To evaluate the fitness of each solution we employed a fitness 

function that maximizes the number of detected antipatterns in 

comparison to the expected ones in the base of examples. In this 
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context, we define the fitness function of a candidate solution, as 

the average of both precision and recall as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =

∑ 𝑎𝑖
𝑝
𝑖=1

𝑡
 +

∑ 𝑎𝑖
𝑝
𝑖=1

𝑝
  

2
∈ [0,1] 

where t is the number of antipatterns in the base of examples, p is 

the number of detected antipatterns, and ai has value 1 if the ith 

detected service exists in the base of examples with the same 

antipattern type, i.e., true positive, and value 0 otherwise. 

3.2.4 Genetic operators 
Crossover: We use a random, single point crossover operator. Two 

parent solutions are selected, and a sub tree is picked on each one. 

Then, the crossover operator swaps the nodes and their relative sub 

trees from one parent to the other. The crossover operator can be 

applied only on parents having the same type of antipattern. Each 

child thus combines information from both parents. 

Mutation: The mutation operator can be applied either to a 

function node or a terminal node. This operator can modify one or 

many nodes. For a selected individual, the mutation operator first 

randomly selects a node in the tree. Then, if the selected node is a 

terminal (quality metric), it is replaced by another terminal (metric 

or another threshold value); if the selected node is a function (AND-

OR operators), it is replaced by a new function (e.g., AND becomes 

OR). If a tree mutation is to be carried out, the node and its subtree 

are replaced by a new randomly generated subtree. 

4. VALIDATION 
This section explains the design of our empirical study; the research 

questions we set out to answer, the methods and statistical tests we 

used to answer these questions. The experimental material is 

available for replication purposes3. 

4.1 Research questions 
We designed our experiments to answer the following research 

questions: 

RQ1 (SBSE Validation): How does the proposed GP-based 

approach performs compared to random search and other existing 

search-based algorithms? 
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RQ2 (Efficiency): To which extent can the proposed approach 

detect Web service antipatterns? 

RQ3 (Sensitivity): What types of Web service antipatterns does it 

detect correctly? 

4.2 Experimental setting 

4.2.1 Analysis method 
To answer RQ1, we compared our GP formulation with random 

search (RS) [24] to make sure that there is a need for an intelligent 

method to explore the search space. In addition, to justify the 

adoption of GP, we compared our approach to two other popular 

search algorithms namely particle swarm optimization (PSO) [25] 

and simulated annealing (SA) [26]. RQ1 is a standard ‘baseline’ 

question asked in any attempt at an SBSE formulation [23]. To 

evaluate the efficiency of each algorithm in detecting Web service 

antipatterns in comparison to RS, PSO and SA, we use precision 

and recall metrics, which are defined as follows: 

𝑅𝑒𝑐𝑎𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑖𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑡𝑖𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 

To answer RQ2, we also use both recall and precision criteria to 

evaluate the efficiency of our approach in identifying antipatterns. 

We considered five common Web service antipattern types, namely 

multiservice, nanoservice, chatty service, data service, and 

ambiguous service (see Section 2.1). 

To answer RQ3, we investigated the antipattern types that were 

detected to find out whether there is a bias towards the detection of 

specific antipattern types. 

4.2.2 Web services used in the empirical study 
Unlike OO open-source systems, Web service providers do not 

make their source code publicly available; instead, they only 

provide Web service interface described as a WSDL document.  We 

collected different Web services using different search engines 

including eil.cs.txstate.edu/ServiceXplorer, biocatalogue.org, 

webservices.seekda.com, taverna.org.uk, programmableweb.com, 

and myexperiment.org. Furthermore, to not bias our empirical 

study, we used different Web services from different application 

domains. Table 3 and Figure 4 summarize the collected services 

ranging from a variety of six categories, i.e., application domains, 

including financial, science, search, shipping, travel and weather. 

All services were manually inspected and validated to identify 

antipatterns based on guidelines from the literature [3] [16]. 

In our study, we used a 6-fold cross validation procedure. We 

split our data into training data and evaluation data. For each fold, 

one category of services is evaluated by using the remaining five 

categories as a base of examples. For instance, weather services are 

analyzed using antipattern instances from travel, shipping, search, 

science and financial services. Hence, precision and recall scores 

are calculated automatically by comparing the detected antipatterns 

with the expected ones. 

4.2.3 Inferential statistical test methods used 
Due to the stochastic nature of the used algorithms, they may 

produce slightly different results when applied to the same problem 

instance over different runs. To cope with this stochastic nature, the 

use of a rigorous statistical testing is essential to provide support to 

the conclusions derived from analyzing such data. Thus, we used 

Table 3. Web services used in the empirical study. 

Category 
# 

services 

# 

antipatterns 

Average # of 

operations 

Average # of 

messages 

Average # of 

complex types 

Financial 94 67 29.52 57.31 19.01 

Science 34 3 8.47 17.14 96.73 

Search 37 13 8.35 18.94 26.13 

Shipping 38 10 13.36 27.76 20.21 

Travel 65 28 16.09 33.13 121.13 

Weather 42 15 8.54 17.16 9.14 

All 310 136 17.08 34.2 48.6 

 

Table 4. Algorithms parameters. 

Algorithm Parameters Values 

GP 

Population size 

Crossover probability 

Mutation probability 

Number of crossing points 

Selection 

100 

0.9 

0.1 

1 

Roulette-wheel selection 

SA 

Initial temperature 

Final temperature 

Cooling coefficient 

Number of iterations 

100 

0.0232 

0.99 

30 

PSO 

Number of particles in a swarm 

Acceleration coefficient c1 

Acceleration coefficient c2 

200 

2 

2 

 



the Wilcoxon rank sum test in a pairwise fashion [27] in order to 

detect significant performance differences between the algorithms 

under comparison. We set the confidence limit, α, at 0.05. In these 

settings, each experiment is repeated 31 times, for each algorithm 

and for each category. The obtained results are subsequently 

statistically analyzed with the aim to compare our GP approach to 

PSO, SA, as well as RS. The results reported in this paper are the 

median values of the 31 runs. 

The Wilcoxon rank sum test allows verifying whether the 

results are statistically different or not. However, it does not give 

any idea about the difference magnitude. To assess the effect size, 

we use the Cohen’s d statistic [27]. The effect size is considered: 

(1) small if 0.2 ≤ d < 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) high if 

d ≥ 0.8. 

4.2.4 Parameter Tuning and Setting 
An important aspect for metaheuristic search algorithms lies in the 

parameters tuning and selection, which is necessary to ensure not 

only fair comparison, but also for potential replication. To this end, 

we report in Table 4 our algorithmic parameter tuning and selection 

used to facilitate the replication of our findings. The initial 

population/solution of GP, PSO, SA, and RS are completely 

random. The stopping criterion is when the maximum number of 

fitness evaluations, set to 25000, is reached. The max depth of the 

tree is fixed to 10. After several trial runs of the simulation, the 

parameter values of the four algorithms are fixed. There are no 

general rules to determine these parameters, and thus, we set the 

combination of parameter values by trial-and-error method, which 

is commonly used in the SBSE community [28]. 

4.3 Results and discussions 
This section presents the experimental results obtained for our three 

research questions. 

Results for RQ1. Table 5 and Figure 3 report the statistical results 

for RQ1. As presented in Table 5 and Figure 3, over 31 runs, the 

RS did not perform well in terms of precision and recall (only 30% 

and 42% respectively) due to the huge search-space of possible 

combinations of metrics and threshold values to explore. Indeed, in 

any attempt at an SBSE formulation of a problem, if the proposed 

formulation does not allow an intelligent computational search 

technique to outperform random search convincingly, then there is 

clearly something wrong with the formulation [23]. 

On the other hand, for the different categories, the statistical 

analysis provide evidence that our GP-based approach performs 

better (with a 95% confidence level) than two other metaheuristic 

search algorithms (PSO and SA). GP provides better performance 

than SA in all the six categories with high Cohen effect size. The 

median recall and precision scores of GP for all studied services 

(union of the six categories) are 87% and 85% respectively, 

whereas SA provide only 70% of both recall and precision. 

Similarly, according to Figure 3 and Table 5, GP provides better 

performance than PSO in four out of six cases with high effect size. 

Only in science and travel Web services, GP and PSO provide 

similar results with small effect size in terms of recall, but still with 

better performance for GP in terms of precision manifested by high 

Cohen effect size. Overall, the median recall and precision scores 

of GP for all studied services were better than PSO that provides 

only 82% of recall and 76% of precision. 

Based on these results, we can conjecture that GP performs 

much better in comparison with PSO and SA. Moreover, we notice 

that SA turns out to be the worst algorithm in comparison with GP 

and PSO. Thus, it seems that population-based metaheuristic 

algorithms tend to be more efficient than local search 

metaheuristics for this problem especially that we use tree 

representation. 

Results for RQ2. To answer RQ2, we focus only on the results of 

our GP presented in Table 5 and Figure 3. Overall, as shown in 

Table 5, we were able to detect antipatterns on the different service 

categories with a precision score of 85 percent. For science and 

weather services, the precision is lower than the other categories 

with respectively 75 and 76 percent. This can be explained by the 

fact that these services are medium-sized and often contain too 

much data and accessor operations to these data which might be 

relatively confusing between multiservice, data service and chatty 

service. For financial and shipping services, the precision score is 

higher (88 and 100 percent), i.e., most of the detected antipatterns 

are true positives. In terms of recall, the obtained results are higher 

than precision. According to Table 5, the median GP recall score 

on all services is 87 percent. We found that, science and shipping 

services have the highest recall scores with 100% and 90% 

respectively. We also had a good trade-off between both recall and 

precision. Therefore, we can conclude that our approach provides 

good performance to detect most of the existing antipatterns, which 

could be very helpful to provide advice to both service clients and 

providers on the quality of their Web services. 

Results for RQ3. Based on the results of Figure 5, we noticed that 

our technique does not have a bias towards the detection of specific 

antipattern types. Figure 5 shows that we had, in all categories, a 

relatively equitable detection results in terms of both precision and 

recall for each antipattern type. For some categories such as 

weather and search, the distribution of antipatterns detection is not 

as balanced (cf. Figure 4). This is principally due to the number of 

actual antipattern types in these categories (none dataservice 

instance exists in weather and search category). Consequently, any 

single false positive will lead to 0% of precision score. 

Overall, all the five antipattern types are detected with good 

precision and recall scores (85% and 87% respectively). Most of 

detected antipatterns are true positives and we do not miss any 

existing antipattern type. This ability to identify different types of 

antipatterns underlines a key strength to our approach. Most other 

existing approaches [10] rely heavily on the notion of size to 

specify antipatterns. This is reasonable considering that some 

antipatterns like the multiservice are associated with a notion of 

size. For antipatterns like data service and ambiguous service, 

however, the notion of size is less important and this makes this 

type of antipatterns hard to detect using structural information. The 

Table 5. Precision and recall median values of GP, PSO, SA, 

and RS over 31 independent simulation runs. 
 GP PSO SA RS 

Category Precision 

(%) 

Recall 

(%) 

Precision 

(%) 

Recall 

(%) 

Precision 

(%) 

Recall 

(%) 

Precision 

(%) 

Recall 

(%) 

Financial 
88 

(o-++) 

85 

(o+++) 

79 

(-o++) 

78 

(+o++) 

75 

(++o+) 

75 

(++o+) 

42 

(+++o) 

45 

(+++o) 

Science 
75 

(o+++) 

100 

(o+++) 

50 

(+o-+) 

100 

(+o-+) 

43 

(+-o+) 

100 

(-+o+) 

17 

(+++o) 

67 

(+++o) 

Search 
85 

(o+++) 

85 

(o+++) 

79 

(+o++) 

85 

(+o++) 

63 

(++o+) 

77 

(++o+) 

26 

(+++o) 

46 

(+++o) 

Shipping 
90 

(o+++) 

90 

(o+++) 

53 

(+o-+) 

80 

(+o-+) 

57 

(+-o+) 

80 

(+-o+) 

19 

(+++o) 

40 

(+++o) 

Travel 
80 

(o+++) 

86 

(o-++) 

89 

(+o++) 

86 

(-o++) 

81 

(++o+) 

79 

(++o+) 

27 

(+++o) 

36 

(+++o) 

Weather 
76 

(o+++) 

87 

(o-++) 

72 

(+o++) 

87 

(-o++) 

61 

(++o+) 

73 

(++o+) 

20 

(+++o) 

33 

(+++o) 

All 
85 

(o+++) 

87 

(o+++) 

76 

(+o++) 

82 

(+o++) 

70 

(++o+) 

76 

(++o+) 

30 

(+++o) 

42 

(+++o) 

A “+” symbol at the ith position means that the algorithm precision median value is 

statistically different from the ith algorithm one; while a “-” symbol at the ith position 

means the opposite. A “o” symbol refer to the current position of the algorithm. For 

instance, for financial services, GP precision is not statistically different from PSO 

one, however, it is statistically different from SA and RS ones). 

 



obtained results provides evidence that such difficulty does not 

limits the performance of our approach in well detecting these types 

of antipatterns. Thus, we can conclude that our GP-based approach 

detects well all types of the considered antipatterns (RQ3). 

Furthermore, it is important to evaluate the scalability of the 

performance of our approach, as scalability is widely considered as 

one of the key issues for software engineering research and 

development. To evaluate scalability of our approach for services 

of increasing size, we executed our approach on the six categories 

of services. Figure 6 illustrates the evolution of precision, recall and 

CPU time with respect to the increase of service size (in terms of 

number of operations). We see from this figure that the precision 

and recall values are relatively stable (between [75, 90]) even if the 

services size increases. The same observation could be seen for 

CPU time which is between [224, 241] seconds. We can say that 

our approach is scalable with respect to service size since it gives 

high precision and recall values, and acceptable execution time. 

5. THREATS TO VALIDITY 
In our study, external threat to validity may arise because, 

although we considered five types of Web service antipatterns, we 

did not evaluate the detection of other antipattern types. In addition, 

we validated our approach on SOAP Web services; and we cannot 

generalize our results to other technologies such as REST. In future 

work, we plan to evaluate the performance of our approach to detect 

other types of antipatterns, and other SOA technologies.  

Construct threats to validity can be related to the set of used 

metrics, and the corpus of antipattern examples as developers may 

not all agree if a candidate Web services is an antipattern or not 

according to their level of expertise on antipatterns. Since we are 

the first to address this problem for automating the detection of web 

service antipatterns, there is no currently established state of the art 

in terms of automated detection. We also found few literature to 

guide us on what we should consider to inspect Web service 

antipatterns [9] [16] [10]. In future work, we will consider more 

static and dynamic Web service metrics, and ask some new experts 

to extend the existing corpus and provide additional feedback. 

6. RELATED WORK 
Detecting and specifying antipatterns in SOA and Web service 

is relatively a new field. Only few works have addressed the 

problem of SOA antipatterns. The first book in the literature was 

written by Dudney et al. [16] where a set of Web service 

antipatterns have been informally defined. Recently, a new book 

[3] have been written to describe the symptoms of some other SOA 

antipatterns. Furthermore, Král et al. [14] listed seven “popular” 

SOA antipatterns that violate SOA principles. In addition, some 

few research works have addressed the detection of such 

antipatterns. Recently, Palma et al. [10] have proposed an approach 

to detect Web service antipatterns. The proposed approach relies on 

declarative rule specification using domain-specific language 

(DSL) to specify/identify the key symptoms that characterize an 

antipattern. Similarly, Moha et al. [19] have proposed a rule-based 

approach called SODA for SCA systems (Service Component 

Architecture). However, unlike our approach, in an exhaustive 

scenario, the number of possible antipatterns to manually 

characterize with rules can be very large; and rules that are 

expressed in terms of metric combinations need substantial 

calibration efforts to find the right threshold value for each metric. 

In another study, Rodriguez et al. [2] [9] [17] provided a set of 

guidelines for service providers to avoid bad practices while 

writing WSDLs. Based on some heuristics, the authors detected 

eight bad practices in the writing of WSDL for Web services. 

Unlike service-oriented systems, there is an extensive research 

effort on detecting object oriented antipatterns and code-smells [6] 

[29] [7] [8]. For instance, Marinescu el al. [29] have proposed a 

mechanism called "detection strategy" OO code-smells by 

 
Figure 3. Boxplots for the obtained detection results in terms of recall and precision, for each Web service category, and for each 

search algorithm GP, PSO, SA and RA. 

 
Figure 4. Antipatterns distribution for each category. 

 

 
Figure 5. Detection results for each antipattern type. 
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formulating metric-based rules that capture deviations from good 

design principles and heuristics. Ouni et al. [7] proposed a search-

based approach to detect code-smells in OO software systems. 

However, OO antipatterns detection techniques are not applicable 

in the context of Web services as we deal with different level of 

granularity (service vs class levels), and different metrics. 

Furthermore, unlike OO systems, Web service source code is not 

publicly available; that is only WSDL interfaces are available for 

clients. This makes the detection of such antipatterns harder. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a new search-based approach for Web 

service antipatterns detection. In our GP adaptation, detection rules 

are represented as a combination of metrics and threshold values 

that should detect as much as possible the number of antipatterns 

from a base of examples. The statistical analysis of the obtained 

results provides compelling evidence that GP outperforms particle 

swarm optimization, simulated annealing as well as random search 

based on a benchmark of 310 Web services including 136 real-

world antipattern instances. As future work, we plan to validate our 

approach with additional antipattern types, and SOAP static and 

dynamic metrics in order to conclude about the general 

applicability of our methodology. Another research direction worth 

to explore is to consider both bad and good Web service instances 

to deduce antipattern detection rules, i.e., good detection rules 

should maximize the distance with well-designed Web services 

while minimizing the distance with badly-designed ones. 

Furthermore, in this paper, as we mainly focus on the detection of 

Web service antipatterns, we are planning to extend the approach 

by automating their correction using SBSE. 
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