
On the Effectiveness of Accuracy of
Automated Feature Location Technique

Takashi Ishio∗, Shinpei Hayashi†, Hiroshi Kazato‡, Tsuyoshi Oshima§
∗Osaka University, Osaka 565–0871, Japan Email: ishio@ist.osaka-u.ac.jp

†Tokyo Institute of Technology, Tokyo 152–8552, Japan Email: hayashi@se.cs.titech.ac.jp
‡NTT DATA INTELLILINK CORPORATION, Tokyo 104–0052, Japan Email: kazatoh@intellilink.co.jp

§NTT Software Innovation Center, Tokyo 180–8585, Japan Email: oshima.tsuyoshi@lab.ntt.co.jp

Abstract—Automated feature location techniques have been
proposed to extract program elements that are likely to be
relevant to a given feature. A more accurate result is expected
to enable developers to perform more accurate feature location.
However, several experiments assessing traceability recovery have
shown that analysts cannot utilize an accurate traceability matrix
for their tasks. Because feature location deals with a certain type
of traceability links, it is an important question whether the same
phenomena are visible in feature location or not. To answer that
question, we have conducted a controlled experiment. We have
asked 20 subjects to locate features using lists of methods of
which the accuracy is controlled artificially. The result differs
from the traceability recovery experiments. Subjects given an
accurate list would be able to locate a feature more accurately.
However, subjects could not locate the complete implementation
of features in 83% of tasks. Results show that the accuracy of
automated feature location techniques is effective, but it might
be insufficient for perfect feature location.
Index Terms—feature location, impact analysis, program com-

prehension, human factor

I. Introduction

Feature location is a program understanding phase in soft-
ware maintenance. A feature represents a functionality that is
defined by requirements and which is accessible to developers
and users [1]. Locating the current implementation of a feature
in source code is important for developers to perform various
maintenance tasks such as enhancement, bug fixing, and
refactoring related to the feature. Mäder et al. reported that
developers who know source files related to requirements can
produce a software change more efficiently [2]. Therefore,
feature location in this paper denotes a phase to find code
snippets relevant to a feature to the greatest extent possible
before source code modification.
Although feature location is important, locating the com-

plete implementation of a feature is difficult for developers [3],
[4]. According to Wang et al. [3], given a feature, developers
use a keyword search tool to identify seed methods that are
likely to be relevant to the feature. For each seed method,
developers explore its source code and related methods to
validate whether the methods are actually relevant to the
feature or not. Although each step in the process seems simple,
developers must identify relevant methods before they can
ascertain the complete implementation of a feature. Further-
more, industrial developers are often asked to locate features

in an unfamiliar system using only its source code because an
enterprise application might outlive its development team.
To support developers locating a feature, various automated

feature location techniques have been proposed [1]. A typical
technique takes keywords or a description of a feature as
input and extracts a list of methods that are only relevant
to the feature. For example, Marcus et al. [5] proposed
an application of latent semantic indexing (LSI) to feature
location. Poshyvanyk et al. [6] proposed the use of execution
traces of a target program to improve a ranking obtained
by LSI. Eaddy et al. [7] combined static analysis, dynamic
analysis, and an information retrieval (IR) technique to extract
a better ranking. Developers can investigate source code using
a result of these techniques, e.g. the top ten methods of a
ranking.
A more accurate result of automated feature location tech-

niques is expected to enable developers to perform more
accurate feature location. However, a question remains as to
whether the accuracy of automated feature location techniques
actually contributes or not to the performance of developers.
This question arises from an observation reported by Cudde-
back et al. [8], Kong et al. [9], and Dekhtyar et al. [10]. They
asked analysts to do manual validation of a traceability matrix
between requirements and system tests. The results indicated
that, whereas analysts given a less-accurate traceability matrix
can identify many false positives and false negatives in the
matrix, analysts given an accurate traceability matrix tend to
decrease the overall accuracy of the matrix. If the same phe-
nomena are visible in feature location, then accurate automated
feature location results might be less effective for actual feature
location performed by developers.
To answer the question, we conducted an experiment with

20 subjects in three organizations. We asked the subjects to
locate a feature using a given list of methods by excluding
false positives from the list and by identifying false negatives
in source code. To evaluate the influence of accuracy of lists,
we prepared a pair of tasks that specify the same feature to
be located but which provide different lists of methods. The
lists are derived artificially from the result of a textual search
using LSI, so that the lists have different accuracy, but have
the same length. The features and the result of LSI used in
this experiment are involved in the open dataset of the work
by Dit et al. and Gethers et al. [1], [11], although we have

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

381



extended the descriptions of features. Each subject used either
an accurate list or a less-accurate list for a feature.
Consequently, we obtained the following observations.
• Subjects given an accurate list located a feature more
accurately than subjects given a less-accurate list.

• Subjects missed one or more relevant methods in 83 of
100 tasks. Even if an accurate list covered the complete
implementation of a feature, several relevant methods
have been falsely recognized as false positives.

• Subjects improved precision of the final result by exclud-
ing false positives. However, they did not improve recall
in several features.

The result shows that developers can utilize results of
automated feature location techniques. However, developers
tend to miss methods that are relevant to a feature if its
description is not sufficiently clear for developers.
The contributions of this paper are summarized as follows.
• We have shown the manner in which accuracy of auto-
mated feature location techniques contribute to the accu-
racy of feature location tasks performed by developers.

• We have reported the manner in which we have prepared
feature location tasks from an existing benchmark. It is
useful for researchers to conduct a similar experiment
using the benchmark.

• We have made our dataset freely available so that other
researchers can replicate the experiment1.

The sections are organized as follows. Section II describes
related work and our research background. We state our
research questions in Section III. Section IV explains the
setting of our experiment. Section V shows the results of
the experiment. In Sections VI and VII, we discuss the
observations and the threats to the validity of our experiment.
Section VIII describes conclusions and future work.

II. RelatedWork

In software maintenance, developers must understand un-
familiar source code of a target system. Ko et al. [12]
reported that developers often use a keyword search tool to
identify source code relevant to their tasks. Wang et al. [3]
emphasized the process of manual feature location in software
maintenance. They also observed that developers often used a
keyword search tool to identify seed methods that are likely
to be relevant to features.
Several researchers reported that developers were unable

to identify the complete implementation of features. Wang et
al. [3] observed that each of precision and recall is less than
75% in their feature location tasks. Egyed et al. [4] conducted
an experiment of manual recovery of requirements-to-code
links. Compared with the correct links created by developers
of the programs, subjects recognized 95% of irrelevant pairs of
requirements and classes, whereas the subjects missed about
half of the relevant pairs. Lindvall et al. [13] conducted a
case study of manual impact analysis. The result shows that

1http://sel.ist.osaka-u.ac.jp/FL/

developers were able to predict only a half of classes to be
modified for the next maintenance release.
Various automated feature location techniques have been

proposed in the literature [1]. Some are comparable in pre-
cision and recall to manual feature location. SNIAFL [14]
shows that its precision and recall are, respectively, 91% and
99% for several small programs. CERBERUS [7] shows that
its precision and recall are, respectively, 75% and 73% in the
best configuration for a particular set of concerns. Gethers et
al. [11] compared several impact analysis techniques in more
practical settings. The best analysis automatically identified
41–75% of methods modified for a feature request. Revelle et
al. [15] manually evaluated results of several automated fea-
ture location techniques. They reported that the best technique
identified three relevant methods among the top ten methods.
Many researchers investigated whether developers can uti-

lize a result of automated techniques or not. Revelle et al. [15]
reported that the authors’ and several students’ validation
results agreed over 90% of the time for a certain feature.
The observation is promising but not generalizable because
it is a single case and the authors have identified only true
positives in the results rather than the complete implementation
of features. In traceability research, Cuddeback et al. [8]
investigated manual validation of the requirement traceability
matrix representing links between requirements and system
tests. They reported that analysts given an accurate traceability
matrix decreased the overall accuracy of the matrix. Kong et
al. [9] analyzed the process of the traceability validation tasks.
Dekhtyar et al. [10] confirmed the observation by statistical
analysis. The analysis indicates that developers cannot utilize
accurate traceability links. Based on the results described
above, Cuddeback et al. [16] discussed a means of addressing
the inaccuracy of developers. Ghabi et al. [17] proposed
automated validation for traceability recovery.
Parnin et al. [18] conducted a controlled experiment to

evaluate the usefulness of automated debugging techniques.
The experiment used an artificially modified ranking derived
from a result of an automated technique. It showed that a
ranking change did not affect the performance of developers.
Chatterji et al. [19] reported that developers were not able to
use code clone detection for bug fixing with no training in code
clones. These research efforts also indicated the importance of
human study to evaluate the actual usefulness of automated
support for developers.
In our experiment, we used LSI to extract a list of methods

relevant to a feature. LSI-based feature location was proposed
by Marcus et al. [5]. Poshyvanyk et al. [6] combined dynamic
analysis with LSI to improve ranking. Binkley et al. [20]
showed that identifier normalization is effective to improve
search results. The effectiveness of LSI was also confirmed
in fault localization. Beard et al. [21] reported that LSI can
recommend an appropriate starting point to locate a fault in
source code for 60 out of 63 bugs in a system. To keep our
experiment simple and easy to replicate, we have used a simple
LSI approach that computes similarity among methods and the
description of a feature [11].

382



TABLE I
Features, Tasks, and Their Accuracy

System Feature (Issue ID) # methods (Type) Task (Type) Precision Recall F-measure

jEdit

fJ0 (2122926) 1 J0 (example) 0.33 (1/3) 1.00 (1/1) 0.50

fJ1 (1747300) 13 (larger) J1b (better) 1.00 (10/10) 0.77 (10/13) 0.87
J1w (worse) 0.40 (4/10) 0.31 (4/13) 0.35

fJ2 (2668434) 6 (smaller) J2b (better) 0.60 (6/10) 1.00 (6/6) 0.75
J2w (worse) 0.30 (3/10) 0.50 (3/6) 0.38

fJ3 (1593464) 10 J3 (goldset) 1.00 (10/10) 1.00 (10/10) 1.00

muCommander

fM0 (311) 2 M0 (example) 0.33 (1/3) 0.50 (1/2) 0.40

fM1 (60) 32 (larger) M1b (better) 1.00 (10/10) 0.31 (10/32) 0.48
M1w (worse) 0.80 (8/10) 0.25 (8/32) 0.38

fM2 (231) 6 (smaller) M2b (better) 0.60 (6/10) 1.00 (6/6) 0.75
M2w (worse) 0.30 (3/10) 0.50 (3/6) 0.38

III. Research Questions

We have conducted a controlled experiment on feature
location using human subjects. We have defined a process
of feature location supported by an automated technique as
follows: given an initial list of methods produced by an au-
tomated technique, a developer validates the list by removing
irrelevant methods (false positives) from the list and by adding
missing relevant methods (false negatives) to the list. Ideally,
a validated list should include no irrelevant methods but all
methods relevant to a feature.
We formulated the following four research questions.
RQ1 Do better initial precision and recall engender better

performance in feature location by developers?
RQ2 Which option is more important for feature location,

initial precision or recall?
RQ3 How do developers spend time to validate a list of

methods?
RQ4 How does a validated list differ from its initial list?
We carefully set up feature location tasks of several types;

each task is validation of an initial list of methods in a limited
time. To answer RQ1, we introduced two categories of tasks:
better and worse. The initial lists of better tasks are accurate,
i.e., having better precision and recall values, than those of
worse tasks. We compared the F-measure of the validated lists
between those of better and worse tasks.
For a response to RQ2, we also introduced two categories

of tasks: precision-intensive and recall-intensive. The initial
lists of precision-intensive tasks have high precision but low
recall; they are related to little false positives and many false
negatives. In contrast, the initial lists of recall-intensive tasks
have high recall but low precision. We compared F-measures
of the validated lists between precision-intensive tasks and
recall-intensive tasks.
To answer RQ3, we have analyzed the activities of subjects.

Each subject is asked to input their judgments in our Eclipse
plug-in. We have analyzed a series of judges with timestamps
to elucidate how they functioned and whether subjects had
sufficient time or not.
To answer RQ4, we have analyzed the manner in which

precision and recall are improved or degraded by validation
tasks.

IV. Experimental Setup

A. Features

The features for our study were prepared using an existing
change-history-based feature location benchmark [1]. This
benchmark is constructed using the information of changes in
revision control systems such as Subversion, and the related
tickets in issue tracking systems such as Trac or Bugzilla. The
benchmark provides a list of change requests including feature
requests and bug reports. Each change request is associated
with a list of methods modified to implement the change, or
a goldset. For objectivity, we have used the existing dataset.
The seven extracted features are shown in the left columns

of Table I. The symbol of a feature is used to identify the
feature in the remaining part of the paper. The Issue ID of a
feature indicates the identifier of the feature in the benchmark.
We have selected five features for the experiment from two

systems: jEdit and muCommander. We extracted a larger
feature and a smaller feature from each system to extract
precision-intensive and recall-intensive tasks. fJ1 and fM1 are
larger features, of which goldsets have more than ten methods.
fJ2 and fM2 are smaller features, of which goldsets have fewer
than ten methods. The feature fJ3 is extracted for checking the
cases in which subjects receive the true goldset having just ten
methods.
In addition to these five features, we have selected two

tiny features: fJ0 implemented in a single method and fM0
implemented in two methods. These features are used to
explain the process of feature location to subjects.
To use the benchmark for our experiment, we fixed two

problems in the benchmark as follows:
• Curation of goldsets. Some goldsets of the benchmark
include inappropriate methods. Because a goldset of a
feature is generated automatically from a change set of
source code in a revision history, it includes methods
that are irrelevant to the target feature if developers
commit multiple intentional changes at once, e.g. the
implementation of the feature together with a refactoring.
Additionally, if rename refactorings are performed after
implementing the feature, then some methods in the
goldset might no longer be found in the source code. We
have manually identified renamed methods and updated

383



muCommander Feature #231
Short Description
“Skip all” for errors that occur during a file transfer operation
Long Description
As suggested in the [http://www.mucommander.com/forums/
viewtopic.php?f=2&t=938 forums]: adding a “Skip all” button
when an error occurs in a multiple file move / copy operation
would be a nice feature to have.
Feature Description
muCommander has a feature that copies/moves files selected by a
user. When a user tries to execute a copy, muCommander shows a
dialog to specify a destination directory. Pushing the Copy button
in the dialog starts a copy process. If an error occurred during the
copying of a file, then an error dialog shows a message and asks
the user to skip the file, retry to copy the file, or cancel the copy
process.
The new feature is “Skip All.” The dialog to specify a destination
directory has a new check box with the caption is “Skip errors.” If
a user checked the box, then muCommander automatically skips
a file if an error occurred, without showing a dialog. The error
message dialog also has a new button “Skip all.” If the button
is pushed, then muCommander shows no error dialog in further
errors, as “Skip errors” is checked.

Fig. 1. Descriptions of feature fM2.

such goldsets. It is noteworthy that the number of methods
in Table I reflects this manual refinement.

• Addition of extended descriptions. Some descriptions
in the benchmark do not describe the associated features
accurately. Because descriptions are submitted to an issue
tracking system by a requester of the feature, a gap sepa-
rates the description and the actually implemented feature.
So that subjects can correctly understand features from
their descriptions, we provided an extended description
for each feature in addition to the original description.
An example of the extended description is presented
as “Feature Description” in Figure 1. For all extended
descriptions, we used a single paragraph to describe the
basic behavior without the associated feature and another
paragraph to describe the target feature to be located.
The extended descriptions are based on the recorded
changes in the benchmark. We tried to explain all the
functionalities added by the recorded changes although
the original descriptions do not mention some of them.

Each feature comprises the following elements: (1) a short
description in the benchmark, (2) a long description in the
benchmark, (3) an extended description, (4) a screenshot of
an execution, and (5) the goldset.

B. Tasks
From the extracted features tasks are generated. The input

for a task is a pair of a feature and an initial list of methods for
the feature. The goal of a task is to validate the initial list using
source code of a system and the descriptions of the feature.
To normalize the effort of subjects, every task is associated
with ten methods, except for example tasks.
We evaluate the performance of a task using precision,

recall, and F-measure for the initial list and the validated list.

Smaller feature

Larger feature

(Goldset)
size < 10

Better task

Worse task

(Goldset)
size > 10

Better task

Worse task

10

false positives

false positives

false positives

Fig. 2. Generation of better and worse tasks.

Letting g, i, and t be the size of a goldset, an initial list, and
true positives, respectively, then the initial F-measure is given
by the harmonic mean of precision t/i and recall t/g:

F =
2 · precision · recall
precision + recall

=
2t
g + i
.

By eliminating t using 2t = F · (g+ i), precision and recall can
be written in terms of F, i, and g:

precision =
F · (g + i)
2i

=
F
2

(
1 +

g
i

)
,

recall =
F · (g + i)
2g

=
F
2

(
1 +

i
g

)
.

In the experiment, we controlled F as an independent variable
and fixed i at ten. Then the tradeoff between precision and
recall is determined by g, where precision gets better for larger
features and recall does better for smaller ones.
We have generated better and worse tasks for each feature.

The lists in better tasks include methods relevant to the features
(gold methods) to the greatest extent possible, whereas the lists
in worse tasks include several methods that are irrelevant to
the features (false positives). A notational example is shown
in Figure 2 to illustrate how a pair of tasks is generated from
the goldset of a feature. In the figure, a gray box and a white
box respectively represent a gold method and a false positive.
For smaller features having fewer than ten gold methods,
generated better tasks have all the gold methods and some false
positives. In contrast, for larger features having more than ten
gold methods, generated better tasks have ten gold methods.
The unused gold methods are regarded as false negatives.
Generated worse tasks have some gold methods and false
positives. We have injected false positives into worse tasks
until their F-measures become less than the threshold FT . We
use FT = 0.40 to differentiate the number of false positives in
better and worse tasks clearly.
The precision, recall, and F-measure of the initial lists of

the generated tasks are shown in the right columns of Table I.
The tasks generated from larger features include a few false
positives but fail to capture many of gold methods. In contrast,
the tasks generated from smaller features cover almost all of
their goldsets, but include many false positives. Therefore, the
former and latter tasks are regarded respectively as precision-
intensive and recall-intensive.

384



TABLE II
Task Assignment

Subject Organization 1st 2nd 3rd 4th 5th
1

Osaka University

J1b J2b M1w M2w J3
2 J2b J1w M1b M2w J3
3 J2w J1b M2b M1w J3
4 J1w J2w M1b M2b J3
5 M2b M1b J1w J2w J3
6 M1b M2w J2b J1w J3
7 M1w J2b J2w J1b J3
8 M2w M1w J2b J1b J3
9

Tokyo Institute of
Technology

J2b J1b M2w M1w J3
10 J1b J2w M1w M2b J3
11 J1w J2b M1b M2w J3
12 J2w J1w M1b M2b J3
13 M1b M2b J2w J1w J3
14 M2b M1w J2w J1b J3
15 M2w M1b J1w J2b J3
16 M1w M2w J2b J1b J3
17

NTT

J1b J2w M2b M1w J3
18 J2b J1w M2w M1b J3
19 M1b M2b J1w J2w J3
20 M2w M1w J1b J2b J3

We have used LSI to select gold methods and false positives
included in the initial lists. Instead of computing LSI result
by ourselves, we used the LSI result prepared by Gethers et
al. [11], which is an extension of the benchmark for impact
analysis. In Gethers’s dataset, an LSI result for a feature
is a ranking of methods with contents similar to the long
description of the feature. We have selected an appropriate
number of gold methods and false positives from the top
of the ranking. For example, J1w includes a list of four
gold methods and six false positives. The gold methods have
higher similarity than the nine other relevant methods. The
false positives have higher similarity than other irrelevant
methods. The generated initial lists are sorted by their LSI
ranking. Almost of gold methods occur in lower rank than
false positives in initial lists because the LSI ranking of the
gold methods are almost lower than ten.

C. Subjects and Task Assignment

We recruited 20 subjects from three organizations of both
academia and industry. Subjects included 16 students of
software engineering and 4 industrial developers. Their Java
experience was widely distributed from 2 to 16 years, with a
median of three years.
No subject knew the target systems. This situation is com-

mon in software maintenance tasks. Developers might have to
update legacy software developed by other teams.
Each subject examined the five assigned tasks in the order

presented in Table II. We carefully assigned the tasks for each
subject, satisfying the following constraints:
• Every subject examines the first and second tasks of the
same system followed by the third and fourth tasks of the
other system, and ends with the goldset task (J3).

• Every subject covers all of the five features.
• Every subject experiences all of the different types of
tasks: a better precision-intensive task, a worse precision-

Fig. 3. Screenshot of FLPlayer.

intensive task, a better recall-intensive task, and a worse
recall-intensive task.

• Every task is examined by at least ten subjects.

D. Environment
Subjects are given an Eclipse IDE installed with a special

view named FLPlayer. We chose Eclipse as our environment
because of its publicity and familiarity to subjects. FLPlayer is
a view for validating a list of methods in Eclipse. A screenshot
of the view is presented in Figure 3. Subjects can see a list
of methods as a table in the view. When they double-click a
method in the view, a source code editor automatically opens
and moves to the definition of the method. After investigating
the source code, they answer whether the method is relevant
or irrelevant to the feature, using the drop-down menu in the
second column of the view. For example, in the figure, at
least six methods are enumerated. Two of them are specified
as irrelevant. In addition, subjects can add a method that is
not listed in the view from the context menu of the method in
a source code editor.
For each task, every subject is given a printed document for

a task and Eclipse environment in which FLPlayer is showing
the list of methods ordered by their LSI ranking. The document
included the descriptions of a feature, a screenshot, the same
list of methods as shown in FLPlayer, and a quick reference
guide of Eclipse and FLPlayer. The feature description for
each task are translated into Japanese due to the nationality of
the subjects. The subjects are prohibited to access other online
materials such as an issue tracking system and to execute the
target systems. We did not provide the LSI scores to subjects
and used them just for the order of methods because they
might reveal which methods are injected as false positives.
Eight laptop computers of the same model were used for

the experiment, each equipped with Core i5 processor (Intel
Corp.), 4 GB RAM, 256 GB SSD, and a 12.1-inch LCD
monitor with WXGA (1280 × 800) resolution. They execute
Eclipse 3.7.2 on Windows 7 (Microsoft Corp.) and JDK 1.7.0

385



without a network connection. Although each laptop has an
embedded pointing device, subjects were allowed to bring their
favorite devices.

E. Procedure

We operated the experiment three times: once for each or-
ganization. For the convenience of the subjects, each operation
is conducted at the location where they belong, using the same
instruments and procedure.
At the beginning of the operation, subjects were given

the following introduction in an hour, using a PowerPoint
presentation: (1) the purpose of the experiment and the goal of
feature location, (2) usage of Eclipse, e.g. showing hierarchies
of method calls and class inheritance relations, searching
references from/to a method, etc., (3) introduction to the
FLPlayer plug-in, (4) an exercise in muCommander using
the example task M0, and (5) another exercise in jEdit using
the example task J0.
Ten minutes were given for each example task. Then the

answer and the reason were explained. Subjects were requested
to validate a list of methods so that other developers can
understand the implementation of the feature. A method is
relevant to a feature if at least a single line of code in the
method is necessary to execute the feature, according to the
definition of goldsets in the benchmark. Although we initially
arranged the same configurations of the laptops for all subjects,
they were allowed to change them during the exercises to fit
their preferences. They were told that we close all editors
in Eclipse between sessions, but we do not change their
preferences settings.
Five sessions were conducted after the introduction. In each

session, the subjects performed a task in a limited time, 30
min, for avoiding weariness. At the end of the session, they
filled in a questionnaire to answer whether they were able
to understand the task, were given sufficient time, and were
confident with their answers. Between sessions, they were
asked to leave the room and have a break of about 10 min.

V. Results

This section presents a discussion of the results of our
experiment to answer the research questions formulated in
Section III. In this section, initial F-measure and validated
F-measure respectively denote F-measures of the initial lists
of tasks given to the subjects and of the resultant lists validated
by the subjects.

A. RQ1

In the experiment, each subject performed four tasks, two
of which start with better initial accuracy than the others.
We obtained 40 samples for each of better and worse tasks.
Figure 4 is a box plot of validated F-measure of better and
worse tasks. The task pairs are located on the horizontal axis,
where the white and gray boxes respectively correspond to
better and worse initial F-measure values. The × symbols
indicate the initial F-measure for each task. For all features,

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tasks

Va
lid

at
ed

 F
−m

ea
su

re

J1 J2 M1 M2

Better
Worse

Fig. 4. Comparison of validated F-measure between better and worse tasks.

TABLE III
Differences of Accuracy between Initial Lists and Validated Ones

Δprecision Δrecall ΔF
Task Mean S.D. Mean S.D. Mean S.D.
Better +0.140 0.230 −0.112 0.195 +0.005 0.231
Worse +0.433 0.298 +0.145 0.236 +0.249 0.271

we observed that manual validation of better tasks tends to
outperform worse ones.
To determine the performance of two kinds of tasks that

are significantly different, we performed paired t-tests on
the validated F-measure. The null hypothesis Hb≤w0 and the
alternative hypothesis Hb>w1 are formulated as described below.
• Hb≤w0 : The average of validated F-measure of better tasks
is equal to or less than that of worse tasks.

• Hb>w1 : The average of the validated F-measure of better
tasks is greater than that of worse tasks.

The p-value was 0.008876, which is sufficiently small to
reject Hb≤w0 at the 1% significance level. We conclude that
a statistically significant difference exist in final F-measure
between better and worse tasks. Subjects given a more accurate
list performed more accurate feature location.
Table III summarized how validation affects precision, re-

call, and F-measure. All metrics show differences between
initial lists and validated ones, e.g. ΔF = Fvalidated − Finitial.
The table shows that subjects given a less-accurate list can
significantly improve the list. In contrast, subjects given an
accurate list tend to decrease recall but keep the overall
accuracy of the list, differently from the result of a traceability
research [10]. The effect of validation is further discussed in
Section V-D.

B. RQ2
We split samples of better and worse tasks into two cat-

egories: precision-intensive and recall-intensive. As a result,
20 samples were obtained for each combination of accuracy
and size of goldset. Figure 5 shows a box plot of validated
F-measure that compares the two categories. In both better
and worse tasks, we observed that tasks with recall-intensive
goldsets tend to outperform those with precision-intensive ones
in the validated F-measure. It is noteworthy that our results

386



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accuracy of Initial Lists

Va
lid

at
ed

 F
−m

ea
su

re

Better Worse

Precision−intensive
Recall−intensive

Fig. 5. Comparison of validated F-measure between precision-intensive and
recall-intensive tasks.

show that 12 participants completely identified a feature in one
or two tasks (17 tasks in total). All of them are recall-intensive
tasks.
To determine whether the performance of tasks are signifi-

cantly different or not, we formulated the null hypothesis Hp=r0
and the alternative hypothesis Hp<r1 as shown below.
• Hp=r0 : For the tasks with the same level of initial F-
measure, the median of validated F-measure of precision-
intensive tasks is the same as that of recall-intensive ones.

• Hp<r1 : For the tasks with the same level of initial F-
measure, the median of validated F-measure of precision-
intensive tasks is less than that of recall-intensive ones.

We performed the Wilcoxon signed-rank test to the median
of validated F-measure for the two categories of tasks. In both
tasks, the p-value was 9.537×10−07, which is sufficiently small
to reject Hp≥r0 at the 1% significance level. We conclude that
a statistically significant difference exists in final F-measure
between the categories. In other words, the initial recall is
more important than the initial precision.

C. RQ3
All subjects were able to classify all methods in initial lists

as either relevant or irrelevant in 30 min. We have analyzed
how subjects spent time for their tasks using the timestamps
of events recorded in FLPlayer. As a result, no significant
difference was found among subjects because of their different
backgrounds. Also, no significant difference was found among
tasks. Most subjects finished their tasks in 20 min.
Figure 6 includes time plots showing evolution of F-

measure values for each subject performing task J2w for
example. The numbers shown indicate the rank of methods in
the initial list. The added methods by subjects have numbers
more than ten. The goldset of this task consists of six methods.
The initial list of methods consists of three true positives and
seven false positives. Subjects must find three false negatives
in the source code. Because the median value of the goldset
size in the dataset of Gethers [11] is six, we chose J2w as a
representative task for locating feature enhancement requests.
The following six kinds of symbols are put on vertices
corresponding to operations of the subjects.

• �, �: rejection of false and true positives
• ©, ×: acceptance of true and false positives
• ⊕, +×: addition of false and true negatives
Although final F-measure values varied among subjects,

all obtained final F-measure values were better than those of
initial ones (Finitial = 0.38) within 20 min. All of them found at
least two gold methods in the first 15 min. In addition, seven
subjects (Subjects 3, 4, 5, 10, 12, 13, and 17) selected one
or more false negatives. Two subjects (Subjects 10 and 19)
decreased the F-measures at the end. According to the log,
the subjects seemed to postpone the decision for the methods
that are in doubt about their relevance to the last minute. These
methods are used by the feature concerned, but also by other
features. It is noteworthy that the © and ⊕ symbols tend to
appear contiguously, which indicates that when the subjects
find one relevant method, they can correctly distinguish true
positives around the method, and can sometimes even pick up
false negatives.
Similarly, the � symbols tend to appear contiguously in the

time plots. The subjects identified all seven false positives,
except Subject 5, who missed only one. It is noteworthy that
few � symbols appear in the series, indicating that the subjects
can separate false positives from the list without losing true
positives.
A similar tendency is observed in the time plots of other

tasks, but we had to omit them from this paper because of
length limits.

D. RQ4
Figure 7 shows the degrees of improvement in precision

and recall for all treatments. Dashed, solid, and dot-dash
lines respectively correspond to better, worse, and goldset
tasks. It is readily apparent that most arrows are moving
rightward, for improving precision, remarkably in worse tasks.
This observation differs from the experiment conducted by
Cuddeback et al. [8], who confirmed a tendency that arrows
move to a diagonal line, precision = recall.
Precision was retained or improved in all tasks by most

subjects. The subjects created the precise (precision 1.00)
result in 68 of 100 tasks. In 82 tasks, precision is greater
than 0.8. The result indicates that subjects can exclude many
false positives from the initial lists.
However, recall has not been improved so much. For ex-

ample, false negatives of M1b and M1w are not identified at
all except for a few subjects. This is true partly because the
feature is implemented by an abstract method and its many
concrete implementations. The abstract method is likely to be
sufficient to achieve the feature. The subjects did not identify
all concrete implementations.
In several tasks, many subjects exhibited decreased recall.

In M2b, several subjects falsely recognized one or two relevant
methods as irrelevant. Because each subject has chosen dif-
ferent methods as irrelevant, voting by several subjects can
eliminate these errors. However, we have observed that a
different understanding of a feature easily prevents developers
from recognizing some true positives as follows.

387



Subject 3
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

F−
m

ea
su

re
Subject 4 Subject 5 Subject 7 Subject 10

Subject 12

0 10 20 30

Elapsed (min)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−
m

ea
su

re

Subject 13

0 10 20 30

Elapsed (min)

Subject 14

0 10 20 30

Elapsed (min)

Subject 17

0 10 20 30

Elapsed (min)

Subject 19

0 10 20 30

Elapsed (min)

8

11

9

10 1 2

34

6

75

12

13

12345 6 7

8

11

9

10

12

12 6

8

11 5 3 4

10 9

8

9

10

12345

7 6

8

11 1234567
910

9

10
12

13
5

2 1

8

11
9

10 6

345
7

9

8

9

10

11

12

13
1234567

9

10

8 12

34567

12 34 56 7

8

9

10

11

8

9

10 12 3 5 6 7 4

11
12

Reject false positive Reject true positive Accept true positive Accept false positive Add false negative Add true negative

Fig. 6. Growth of accuracy during manual validation of J2w.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

R
ec

al
l

M1b

M1w

M2b

M2w

J1b

J1w

J2b

J2w

J3

Better

Worse

Goldset

Fig. 7. Change in precision and recall.

In J1b and J3, many subjects falsely recognized a particular
group of relevant methods as false positives. The task J1b
asked developers to locate a feature that enabled users to
choose a shape of a marker shown in a window. Whereas the
previous implementation has a triangle marker, the new feature
supported new shapes such as a box and circle. The feature
is implemented as a new item to select a marker shape in a
preferences dialog and a new class ShapedFoldPainter for
drawing new marker shapes. However, seven of ten subjects
recognized the methods in the new class as irrelevant, perhaps
because they understood that the feature simply modified the
preferences dialog.

In J3, the task described that the new feature enabled
users to choose file icons for a view from operating system
icons or default icons provided by jEdit. As a result, 13 of
20 subjects recognized several getDefaultIcon methods as
irrelevant because they were likely to have been basic behavior.
However, the methods are involved in the goldset because the
concept of “default icon” has been introduced for the feature.
In other words, the method names reflected the new feature,
whereas their source code implements the basic behavior.
In M1b and M1w, the original description included an

ambiguous phrase “the preferences dialog.” It refers to
class PreferenceDialog and its subclasses General-
PreferencesDialog and ThemeEditorDialog. Also, 6 of
20 subjects falsely recognized a method of class Theme-
EditorDialog as a false positive because the dialog class
name differs from the other two classes.

VI. Discussion
We have shown that a more accurate list of methods enabled

subjects to perform more accurate feature location (RQ1).
That result emphasizes the importance of further research
efforts to improve the accuracy of automated feature location
techniques. Although a tradeoff exists between precision and
recall, developers manually improved precision rather than
recall (RQ2). As a consequence, a feature location technique
with higher recall is a more promising direction. In traceability
recovery experiments [8], [9], [10], no significant difference
was found between precision and recall. One possible reason
for this result is that subjects can understand features in detail
during their tasks by reading relevant methods in initial lists.
Because relevant methods are often connected by method call
relations, more relevant methods in an initial list might provide
a connected call graph that is easier to understand. How-
ever, system tests can be independently by natural language.
Therefore, validating a link in a traceability matrix might not

388



provide additional information about the manner in which
requirements and system tests are related mutually.
Higher recall might be achieved by a longer list of methods,

as evaluated in [11], [22]. In this experiment, developers
validated 50 methods during five sessions. In each session,
developers took about 20 min to validate ten methods. If
automated feature location techniques generate a longer list of
methods, then both learning effects and fatigue might affect
the performance of developers. To utilize a longer list, an
additional support such as a keyword search for a list of
methods would be needed, as Parnin et al. suggested for
automated debugging [18].
Although subjects located a complete implementation of a

feature in 17 of 100 tasks, many subjects falsely recognized
relevant methods as false positives. One reason is that a
target feature in a program is dependent on another feature
in the program. The goldsets included such methods in the
dependent feature because they are also modified to imple-
ment the target feature. However, subjects showed difficulty
determining whether such methods should be a part of a
feature or not. Allowing developers to categorize methods into
three categories as relevant, irrelevant, and marginal might be
effective to avoid the problem.
An insufficient description of a feature also prevents de-

velopers from accurate feature location. Each description of
a feature request recorded in an issue tracking system often
excludes the basic behavior of software without the feature
because the description is written by users or developers who
know other basic features of the software. To conduct our
experiment, we must manually extend the description of a
feature to enable subjects to distinguish the target feature from
basic features.
A clearer understandable description of a feature is im-

portant but challenging because a description might become
ambiguous if developers modified source code. For example,
one presumes a description that explicitly refers to classes
by their names, e.g. PreferencesDialog instead of a phrase
“the preferences dialog.” If a developer added a new subclass
of the class, the developer must inspect the description and
the feature implementation to ascertain whether the description
should be updated or not. This problem is similar to fragile
pointcut problem [23]. A pointcut is a predicate to identify
program elements in Aspect-Oriented Programming [24]. A
pointcut is fragile because a change in source code accidentally
affects a set of program elements selected by the pointcut. A
feature description might be more fragile because it is written
in natural language, whereas pointcut is a formal predicate.
As Mäder et al. [25] proposed for analysis of developers’ ac-
tivities affecting traceability links, some technique to maintain
consistency between feature description and source code might
be very useful.
Another means to improve recall is the use of interactive

feature location techniques such as [26], [27]. They can
recommend methods related to a method by which developers
focus so that developers can identify more false negatives in
source code. If the tools can provide an explanation of why

methods are recommended as relevant, then the tools might
be effective to avoid the accidental exclusion of true positives.

VII. Threats to Validity
A. Internal Validity
The first threat to internal validity is related to the feature

location technique we used for the experiment. To obtain
lists of methods and to control their accuracy artificially,
we exploit the result of LSI, an IR-based feature location
technique taken from the dataset of Gethers et al. [11]. While
false positive methods selected by LSI includes keywords
semantically related to features, they might be easier to be
identified because developers could investigate the methods
using different criteria such as method call relationship and
data dependence. A different result might be observed if
goldsets and false positives are selected by those different
criteria.
Because comparison of feature location techniques by pre-

cision and recall is a common means of evaluation in the liter-
ature, we expect that the IR-based technique can be replaced
with another as long as its result has comparable precision
and recall. However, given a feature location technique for
prioritizing methods that are difficult for developers to find,
then the result might be inverted. For example, De Lucia
et al. [28] conducted an experiment on labeling classes and
pointed out that IR-based techniques can find information
that is difficult for developers to find. Similar effects might
occur in IR-based feature location techniques. In fact, some
feature location techniques recommend relevant methods from
an initial list [26], [27]. These techniques are consistent with
the behavior of the subjects observed in RQ3. They prevent
developers from missing false negatives. If these techniques
are used in the experiment, then manual validation might work
better in adding false positives rather than removing false
negatives.
Another internal validity is a concern about the feature lo-

cation tasks we designed. To avoid feature location tasks being
overly dependent on a system, we choose feature requests from
two systems. Additionally, we took two features from each
system: one feature has a larger goldset; the other has smaller
one, to avoid dependence to the size of the goldset. The task
we prepared showed better and worse results for each of the
four feature requests, and one task which gives the goldset
itself. The result of our experiment might be dependent on
those tasks. This threat can be decreased by adding more tasks
and by replicating the experiment because we also make the
dataset available online.

B. External Validity
As for the external validity, we believe that the results of

our experiment can be generalized for use in other academic
and industrial organizations. We recruited subjects from two
universities and an industrial company and asked them to
perform the same tasks. Because all of their organizations
are specialized in software engineering, a weak threat exists
by which the subjects might share some background in the

389



discipline. We regard this threat as acceptable because their
spectrum of programming experience ranges from a few to 40
years.
We also believe that the result can be generalized to other

systems written in Java language. However, the result might
not be applicable in industry because the tasks are taken only
from open-sourced systems.

C. Construct Validity
The major threat related to construct validity is that we

used F-measure to assess the accuracy of both initial lists
and validated lists. Although the F-measure captured the total
improvement of precision and recall, different precision and
recall values might result in the same F-measure. To avoid
that problem, we analyzed precision and recall separately in
Section V-D. However, a threat still remains. If subjects often
excluded a true positive from a list and included a false
negative in the list, then the recall value is not changed. Such
an effect is not readily apparent in the metric.

VIII. Conclusion
As described in this paper, we have conducted a controlled

experiment of feature location tasks. We have prepared lists
of methods obtained using an automated technique, but their
accuracy is controlled artificially. We asked 20 subjects to
validate the lists manually. Consequently, the validated lists
were totally improved from the initial lists. Developers could
improve precision by recognizing false positives well, but they
could not improve recall. This is true because a different
understanding of a feature prevented the developers from
recognizing true positives.
Several avenues of future effort remain. Due to reducing

time effort for subjects, we kept the lists of methods small.
How large a list of methods developers can reject false pos-
itives from the list should be investigated. Another important
question is whether an incomplete feature location result is
also effective for maintenance tasks, as similar to the effect
of full requirements-to-code traceability reported by Mäder et
al. [2]. Because developers understand more about a feature
during their maintenance tasks, a partially located feature
might be sufficient for developers. We are also interested in
improving the feature location benchmark. We expect that
the curation of goldsets described in Section IV-A can be
automated to some extent by tracing changes on gold methods
in the version history.
Acknowledgments. We would like to thank all the subjects

who participated in this study. This work was supported by
KAKENHI (Nos. 23680001, 23700030, and 25220003).

References
[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location

in source code: A taxonomy and survey,” J. Softw.: Evol. and Proc.,
vol. 25, no. 1, pp. 53–95, 2013.

[2] P. Mäder and A. Egyed, “Assessing the effect of requirements traceability
for software maintenance,” in Proc. ICSM, 2012, pp. 171–180.

[3] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study
of feature location process: Distinct phases, recurring patterns, and
elementary actions,” in Proc. ICSM, 2011, pp. 213–222.

[4] A. Egyed, F. Graf, and P. Grünbacher, “Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments,” in Proc. RE,
2010, pp. 221–230.

[5] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proc. WCRE,
2004, pp. 214–223.

[6] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Trans. Softw. Eng.,
vol. 33, no. 6, pp. 420–432, 2007.

[7] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “CERBERUS:
Tracing requirements to source code using information retrieval, dy-
namic analysis, and program analysis,” in Proc. ICPC, 2008, pp. 53–62.

[8] D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated requirements
traceability: The study of human analysts,” in Proc. RE, 2010, pp. 231–
240.

[9] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden, “How do we trace
requirements? an initial study of analyst behavior in trace validation
tasks,” in Proc. CHASE, 2011, pp. 32–39.

[10] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and
W.-K. Kong, “On human analyst performance in assisted requirements
tracing: Statistical analysis,” in Proc. RE, 2011, pp. 111–120.

[11] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proc. ICSE, 2012, pp. 430–
440.

[12] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971–987, 2006.

[13] M. Lindvall and K. Sandahl, “How well do experienced software
developers predict software change?” J. Syst. Softw., vol. 43, no. 1, pp.
19–27, 1998.

[14] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards a
static noninteractive approach to feature location,” ACM Trans. Softw.
Eng. Methodol., vol. 15, no. 2, pp. 195–226, 2006.

[15] M. Revelle and D. Poshyvanyk, “An exploratory study on assessing
feature location techniques,” in Proc. ICPC, 2009, pp. 218–222.

[16] D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden, and W.-K. Kong,
“Towards overcoming human analyst fallibility in the requirements
tracing process,” in Proc. ICSE, 2011, pp. 860–863.

[17] A. Ghabi and A. Egyed, “Code patterns for automatically validating
requirements-to-code traces,” in Proc. ASE, 2012, pp. 200–209.

[18] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proc. ISSTA, 2011, pp. 199–209.

[19] D. Chatterji, J. C. Carver, B. Massengill, J. Oslin, and N. A. Kraft,
“Measuring the efficacy of code clone information in a bug localization
task: An empirical study,” in Proc. ESEM, 2011, pp. 20–29.

[20] D. Binkley, D. Lawrie, and C. Uehlinger, “Vocabulary normalization
improves IR-based concept location,” in Proc. ICSM, 2012, pp. 588–
591.

[21] M. Beard, N. Kraft, L. Etzkorn, and S. Lukins, “Measuring the accuracy
of information retrieval based bug localization techniques,” in Proc.
WCRE, 2011, pp. 124–128.

[22] A. D. Eisenberg and K. D. Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in Proc. ICSM, 2005, pp. 337–346.

[23] C. Koppen and M. Störzer, “PCDiff: Attacking the fragile pointcut
problem,” in Proc. European Interactive Workshop on Aspects in
Software, 2004. [Online]. Available: http://pp.info.uni-karlsruhe.de/
uploads/publikationen/stoerzer04eiwas.pdf

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. Loingtier, and J. Irwin, “Aspect oriented programming,” in Proc.
ECOOP, 1997, pp. 220–242.

[25] P. Mäder, O. Gotel, and I. Philippow, “Enabling automated traceability
maintenance by recognizing development activities applied to models,”
in Proc. ASE, 2008, pp. 49–58.

[26] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in Proc. ESEC/FSE, 2005, pp. 11–20.

[27] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Proc. CSMR, 2009, pp. 109–118.

[28] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in Proc. ICPC, 2012, pp. 193–202.

390


