Engineering

IEEE TRANSACTIONS ON
SOFTWARE
ENGINEERI

Ranking Significance of Software Components Based on Use Relations
Paper in journals: this is the first page of a paper published in IEEE Transactions on Software Engineering.
[IEEE Transactions on Software Engineering] 31,213-225 (2005)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3,

Ranking Significance of Software Compol
Based on Use Relations

MARCH 2005

Katsuro Inoue, Member, IEEE, Reishi Yokomori, Member, IEEE, Tetsuo Yamamoto, Member, IEEE,
Makoto Matsushita, and Shinji Kusumoto, Member, |IEEE

Abstract—Collections of already developed programs are important resources for efficient development of reliable software systems.
In this paper, we propose a novel graph-representation model of a software component library (repository), called component rank
model. This is based on analyzing actual usage relations of the components and propagating the significance through the usage

relations. Using the component rank model, we have developed a Java class retrieval system named SPARS-J and applied SPARS-J
to various collections of Java files. The result shows that SPARS-J gives a higher rank to components that are used more frequently.
As a result, software engineers looking for a component have a better chance of finding it quickly. SPARS-J has been used by two

companies, and has produced promising results.

Index Terms—Component rank, graph representation model, reuse models, program analysis, reusable libraries.

1 INTRODUCTION

COM!’UTER systems are becoming core infrastructures of
effective and efficient activities of everyday life. The
software that exists in these computer systems is becoming
ever larger and more complex, and demand for high
software quality is becoming stronger. One promising
approach to the efficient development of quality software
is to leverage software reuse.

A lot of research on structuring and retrieving software
libraries (repositories) for reuse has been performed [10],
[14], [16], [19], [21], [23]. However, we do not know much
about successful cases, in the sense that library reuse is
widely prevalent in software development organizations.
Library reuse is vital for efficient development of quality
software in the organization.

Mili et al. have extensively investigated and precisely
classified a wide variety of research on retrieval of software
libraries, and have shown the nature and various char-
acteristics of classified technologies [17]. Their results
suggest that a promising approach to a practical reuse
system is to employ the information retrieval method based
on a textual analysis of software. This method can be highly
automated with a low operational cost, and we can easily
apply various techniques developed for natural language
and HTML documents. However, since the repository and
retrieval structures are generally very simple, we usually

e K. Inoue, R. Yokomori, M. Matsushita, and S. Kusumoto are with the
Software Engineering Laboratory, Department of Computer Science,
Graduate Scheol of Information Science and Technology, Osaka Uni-
versity, 1-3, Machikaneyama-cho, Toyonaka-city, Osaka, 560-8531, Japan.
E-mail: {inote, yokomori, matusifa, kusumoto)@ist.osaka-u.ac.jp.

o T. Yamamoto is with the Department of Computer Science, College of
Information Science and Engineering, Ritsumeikan University, Nofi
Higashi 1-1-1, Kusatsu City, Shiga 525-8577, Japan.

E-mail: tetsuo@cs.ritsumei.ac.jp.

Manuscript received 19 May 2004; revised 15 Dec. 2004; accepted 20 Dec.
2004; published online 20 Apr. 2005.

Recommended for, acceptance by W. Frakes.

For mformation on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0095-0504.

0098-5589/05/$20.00 © 2005 IEEE

ANNUAL REPORT OF 0SAKA UNIVERSITY—Academic Achievement—2004-2005

get a broad result for a query. Thus, it is essential to
introduce a mechanism to narrow the query result.

In this paper, we propose a novel ranking method to
narrow retrieved software components from reusable
libraries. We define a component rank model based on a
graph representation scheme of the component library [9].
In this model, a collection of software components is
represented as a weighted directed graph, i.e., the nodes
of the graph correspond to components and the edges
linking the nodes correspond to cross component usage.
Similar components are clustered into one node so that the
effect of duplicated components is removed. The nodes in
the graph are ranked by their weights, which are defined as
the elements of the eigenvector of an adjacent matrix for the
directed graph. The resulting rank, named component rank,
is used to prioritize the query result so that highly ranked
components are quickly seen by the user. The idea behind
component rank originates from computing impact factors
(called influence weights) of published papers [20]. This
approach has been extended to ranking Web documents on
the Internet [18].

Using the component rank, we have developed a
component search system, named SPARS-|, which treats
the source files of Java classes as components. This system
has been applied to various collections of Java programs,
such as JDK, programs downloaded from the Internet, and
business applications from two companies.

The results show that a class frequently invoked by other
classes (such as those that implement fundamental and
standard data structures) generally has a high rank, and
that nonstandard and special classes typically have a low
ranking. Two companies use SPARS-] for automatic
management of their software assets, and SPARS-] shows
very promising results.

In Section 2, we propose a component rank model.
Section 3 shows the Java component search system SPARS-]
based on the component rank model. The results of

Published by the IEEE Computer Society

4 ©[2005] IEEE & IEEE Computer Society. Reprinted, with permission, from Transactions on Software Engineering, Vlol. 31 (2005) .

Osaka University 100 Papers : 10 Selected Papers

The following is a comment on the published paper shown on the preceding page.

Ranking Significance of Software Components Based on Use

Relations
INOUE Katsuro

(Graduate School of Information Science and Technology)

Introduction

ollections of already developed programs are important
Cresources for efficient development of reliable software sys-
tems. In this paper, we propose a novel graph-representation model
of a software component library (repository), called component
rank model[1]. This is based on analyzing actual usage relations
of the components and propagating the significance through the
usage relations.

Using the component rank model, we have developed a Java
class retrieval system named SPARS-J and applied SPARS-J to
various collections of Java files. The result shows that SPARS-J
gives a higher rank to components that are used more frequently.
As a result, software engineers looking for a component have a
better chance of finding it quickly. SPARS-J has been used by two
companies, and has produced promising results.

Component Rank Model

Software systems are modeled by a weighted directed graph,
called a component graph. A node in a graph represents a software
component, and a directed edge e from node x to y represents a
use relation, meaning that component x uses component y. Fig. 1
shows a component graph with computed weights, where v, has

0.4 0.2

Fig. 1
©[2005] IEEE & IEEE Computer Society

two outgoing edges, and weight 0.4 is evenly divided between two
outgoing edges with 0.2 each. Here, v; has two incoming edges,
each with a weight of 0.2, so that the weight of v; is 0.4. The weight
of each node w(v;) is determined by the following equation, and
it is computed as the eigenvector.

z
wn) " dy, dy, ---d, w(v,)
W(.Vz) = i, O, Sy #05)
VV(V,,) dnl an S dnn W(Vn)

If we assume that the movement of a software developer’s focus
on the target components is represented by a probabilistic state
transition, the component graph is understood as a Markov chain
model. Thus, computing the weights of the nodes in the graph cor-
responds to attaining a stationary distribution of the chain. This-
model is inspired by computing the impact factor of publications[2]
and the rank of HTML documents[3].

A=D, B=F
component graph

clustered component graph
Fig. 2

As a specific feature of software components, we have devised
amethod of clustering similar software components. In many sys-
tems, components are duplicated inside a single system and also
they are shared with other systems. To remove the effect of com-
ponent duplication, we merge similar components into a single
one. Figure 2 shows this process. In the left-hand side graph, we
detect similar components B and F, and also A and D. Those pairs
are merged into single nodes BF and AD, as shown in the right-
hand side.

ANNUAL REPORT OF OSAKA UNIVERSITY—Academic Achievement—2004-2005 23

Fig. 3 Java source files

Extraction

Component
Searcher

Browser

SPARS-]

Ranked Component @
Archive

SPARS-J

Based on the component rank model, we have designed and
implemented SPARS-J (Software Product Archiving and Retriev-
ing System for Java) to compute the component rank and to search
components for Java programs. Fig. 3 shows the architecture of
SPARS-J. Fig. 4a shows an example screenshot of the resulting
component list for given query keywords. The details of a com-
ponent can be seen by clicking an item on the list, as shown in Fig,
4b. On this screen, we can obtain various views of the component,
such as its source code (A), similar components (B), components
that use this component (C), components used by this component
(D), metrics values of the component (E), and others.

24 ANNUAL REPORT OF 0SAKA UNIVERSITY—Academic Achievement—2004-2005

©[2005] IEEE & IEEE Computer Society

et R e R e ¥
®-3-@ 260 ing2 JAVA METHOD NAWE=12JAVA CLAS 9 G,
l;;‘.,p:ﬂ.p QFWMNNI\?@F&’ 7

21 groups (36 classes) found
- 50 classes [(zort]
- 123085 classes [string]
- 7661 classes [sfr]

» ogiiossdbfengme DB
Holds primarity constants and some tool methods.

Description: www 10ss.0rg
Last modified: Wed Jan 28 18:05:39 2004
File name: DB java (LOC: 1863, # of Methods: 63)

- i 2 LS — ¥ at -~ =
Fig.4a ©[2005] [EEE & IEEE Computer Society

Osaka University 100 Papers : 10 Selected Papers

rank class name weight
o L 150 LA LY

4 java.lang Exception 0.0310
5 java.io.IOException 0.01343
6 java.lang.StringBuffer 0.01214
7 java.lang.SecurityManager 0.01169
8 java.io.InputStream 0.01027
9 java.lang.reflect.Field 0.00948
10 java.lang.reflect.Constructor 0.00936
1256 sunw.util. EventListener 0.00011
1256

Table 1
Experiment with JDK

All source programs of Java 2 Software Development Kit, Stan-
dard Edition 1.3.0 are the target of the application. It is composed
of 1877 java files of totally 575,000 lines of code in Java. These
files include the classes which are very important and fundamen-
tal ones to develop various Java applications.

Table 1 shows the resulting Component Rank values for each
file, listed from the highest rank to the lowest one. The highest
one, java.lang.Object class, is the superclass of any class in
Java, so that this class is used directly or indirectly by any class,
causing it on the top of the ranking. Other highly ranked classes
are also fundamental ones that are possibly invoked or inherited
from many other classes. The 3rd class, java.lang.Throwable,
is the superclass of any error or exception handlers so that it is used
by many classes with error or exception handling. There are 622
classes with the lowest (1256th) rank. These classes are not used
by any other classes at all. The overall result of Component Rank
for JDK 1.3.0 matches to our intuition such that very general and

e il b Bl o R :

@5 -2 ©

[Frefox Help | Fefos 5

>

. |org.iioss.db ine
(0]
Seurce Code [Cigiy| Using DB | Used by D | Meffics | Clo
T 7| Gototheclassstartline A
Go fo the first hi it of G8FE Go to the first highlight of ¢
i
Sag-Hoss:duL. * the actual guick sort implementation
parent final private static void §S6%E (SEEing ss[], int l=ft,
package . if {left >= right) {
return;
Classes }
arn E SEEng pivot = ss[left];
o - int 1 = left;
5 int r = right;
Methods (61 while (1 < r} {
while (1 <= right && collator.compare(ss[l], p:
» DBOID ge 1447
» void sefDE ¥
»+ boolean ¢ .
ot i cansl while (r >= left &s collator.compare(ss(r], prJ
Fig.4b ©[2005] IEEE & IEEE Computer Society

core classes are ranked high, and specific and independent class-
es are ranked low.

Case Study at Daiwa Computer

Daiwa Computer, located in Osaka, Japan, is a software com-
pany with about 180 engineers. In this company, five Web-based
data management applications have been developed. These five
applications and the framework itself form the target software
library of the ranking. The number of components in the frame-
work is 250, and the overall library contains 1,538 components in
total, which are clustered into 339 nodes. We investigated the high-
ly-ranked classes and found that those classes are the definition of
data structures and their containers. For example, the first-ranked
class is the definition of a record class for database management.
These results confirm our approach, i.e., it is easy to identify core
and fundamental components by their ranking.

Case Study at Suntory Lid.

Suntory Limited is Japan’s leading producer and distributor of
alcoholic and nonalcoholic beverages, where hundreds of Java
applications have been developed for various activities such as sales,
deliveries, accounts, and so on. To evaluate SPARS-J, the com-
pany provided about 2,400 components (classes) that are used in
the many application programs developed in the company. The
evaluation result shows that the SPARS-J was supported by the
engineers and managers. The display features provided by SPARS-
J (such as using and used-by relations) score highly, as the rank-
ing feature does. Furthermore, some engineers reported that it is
easy to grasp the structure of the application and to perform an
impact analysis for modification of a component. Currently,
SPARS-J is daily used in Suntory as a company-wide software
component repository.

Conclusion

The approach of SPARS-J shows a lot of promise for use in var-
ious situations of software development, such as searching, explor-
ing, checking, investigating, reminding, or referring to software
components, as we use dictionaries and libraries when writing a
composition. SPARS-J can be considered as a Google-like system
for software engineers.

References

[1] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto,
T., Matsushita, M., and Kusumoto, S., “Component
Rank: Relative Significance Rank for Software Com-
ponent Search,” Proc. 25th Int’l Conf- Software Eng.
(ICSE2003), 14-24 (2003)

[2] Pinski, G. and Narin, F., “Citation Influence for Jour-
nal Aggregates of Scientific Publications: Theory, with
Application to the Literature of Physics,” Information
Processing and Management, 12,297-312 (1976)

[3]Brin, S. and Page, L., “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Computer Net-
works and ISDN Systems, 30, 107-117 (1998)

ANNUAL REPORT OF OSAKA UNIVERSITY—Academic A

2004-2005 25

