
ARIES: REFACTORING SUPPORT ENVIRONMENT BASED ON CODE
CLONE ANALYSIS

Yoshiki Higo1 Toshihiro Kamiya2 Shinji Kusumoto1 Katsuro Inoue1
1Graduate School of Information Science and Technology, Osaka University

2PRESTO, Japan Science and Technology Agency
email :{y-higo,kamiya,kusumoto,inoue}@ist.osaka-u.ac.jp

ABSTRACT
Code clone has been regarded as one of factors that make
software maintenance more difficult. A code clone is a
code fragment in a source code that is identical or simi-
lar to another. For example, if we modify a code fragment
which has code clones, it is necessary to consider whether
we have to modify each of its code clones. Hence, removal
of code clones makes maintainability and comprehensibil-
ity of source code more improved. We have proposed a
method that detects refactoring-oriented code clone. In this
paper, in order to improve the usefulness and applicability
of the method in the actual software maintenance, we have
extended our refactoring support method. Concretely, we
have developed a characterization of code clones by some
metrics, which suggest how to remove them. Then, we
have developed refactoring support toolAries. We expect
Aries can support software maintenance more effectively.

KEY WORDS
Code Clone, Refactoring, Metrics, Object-Oriented, Tool,
Software Maintenance

1 Introduction

Recently, maintaining software systems has been becom-
ing more difficult as the size and complexity of software
is increasing. Maintenance of software system is defined
as modification of a software product after delivery to cor-
rect faults, to improve performance or other attributes, or
to adapt the products to a modified environment[13]. Actu-
ally, it is reported that many software companies expend a
lot of time and human cost for software maintenance.

It is generally said that code clone is one of fac-
tors that make software maintenance more difficult. E.g.
Fowler said that number one in the stink parade is dupli-
cated code in his book[6]. A code clone is a code frag-
ment that is identical or similar to another. Code clones
are introduced because of various reasons such as reusing
code by ‘copy-and-paste’. If we modify a code fragment
and it has many code clones, it is necessary to consider
whether we have to modify each of its code clones. Es-
pecially, for large scale software, such processes are very
complicated and need much cost. So, efficient code clone
detection is necessary and important in software develop-
ment and maintenance.

So far, there exist many researches to automat-
ically detect code clones[4][11][12] and remove code
clones[2][3][10]. We have also suggested a refactoring
method that can apply practical software development and
maintenance[7]. But, we have not implemented the method
as an actual software tool.

In this paper, in order to improve the usefulness and
applicability of the method in the actual software mainte-
nance, we have extended our refactoring support method.
Concretely, we have developed a characterization of code
clones by some metrics, which suggests how to remove
them. Then, we have developed refactoring support tool
Aries. Aries can detect refactoring-oriented code clones in
practical time from large scale software. Moreover, Aries
characterizes detected code clone using some metrics. In
other word, Aries tells the user which code clones can
be removed and how to remove them. So, the user can
concentrate on modifying source code, which leads soft-
ware development and maintenance to more effective ones.
Through case studies for an open source software, we con-
firm the applicability of Aries.

2 Preliminaries

Here, we define some terminology regarding code clones.
Next, we briefly explain our previous research results, a
code clone detection toolCCFinder[9], and a refactoring
method for code clones detected by CCFinder.

2.1 Code Clone

A clone relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on code
fragments[9]. A clone relation holds between two code
fragments if (and only if) they are the same sequences. (Se-
quences are sometimes original character strings, strings
without white spaces, sequences of token type, and trans-
formed token sequences.) For a given clone relation, a pair
of code fragments is called aclone pair if the clone rela-
tion holds between the fragments. An equivalence class of
clone relation is called aclone set. That is, a clone set is
a maximal set of code fragments in which a clone relation
holds between any pair of code fragments. A code frag-
ment in a clone set of a program is called a code clone or

436-084 222

melissa

simply a clone.

2.2 Detecting Code Clone

CCFinder detects code clones both within files and across
files from programs and outputs the locations of the clone
pairs on the programs. The length of minimum code clone
is set by the user in advance. Clone detection of CCFinder
is a process in which the input is source files and the output
is clone pairs. The process consists of following four steps:

Step1 Lexical analysis: Each line of source files is di-
vided into tokens corresponding to a lexical rule of
the programming language. The tokens of all source
files are concatenated into a single token sequence, so
that finding clones in multiple files is performed in the
same way as single file analysis.

Step2 Transformation: The token sequence is trans-
formed, i.e., tokens are added, removed, or changed
based on the transformation rules that aims at regular-
ization of identifiers and identification of structures.
Then, each identifier related to types, variables, and
constants is replaced with a special token. This re-
placement makes code fragments with different vari-
able names clone pairs.

Step3 Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs.

Step4 Formatting: Each location of clone pair is converted
into line numbers on the original source files.

CCFinder adopts suffix-tree algorithm, which is en-
able to analyze the system of milliions line scale in practi-
cal use time. The detail is written in [9].

2.3 Identifying Refactoring-Oriented Code
Clone

The removal of code clones is generally referred as
refactoring[6] or restructuring. The key idea of our
method is to find a kind of cohesive code fragment (like
compound blockor method bodies) from the code clone
fragments. Figure 1 shows an example. In this figure, there
are two code fragmentsA andB from a program, and the
code fragments with hatching are maximal clones between
them. In code fragmentA, some data are assigned to list
data structure from the head successively. In code frag-
mentB, they are done so from the tail successively. The
for blocks inA andB have a common logic that handles
a list data structure. There are, however, sentences before
and afterfor block, that are not necessarily related with
the for block from semantic point of view. Such seman-
tically unrelated sentences often obstruct refactoring. In
other word, extracting onlyfor block as a code clone is

more preferable from refactoring viewpoint in this exam-
ple.

This method is implemented as a filter for the output
of CCFinder. We named the filterCCShaper[7]. The ex-
tracting process using CCShaper consists of the following
three steps:

Step1 Detect clone pairs using CCFinder.

Step2 Provide syntax information (body of method, loop
and so on) to each block by parsing the source files
where clone pair are detected in Step1 and investigat-
ing the positions of blocks.

Step3 Extract structural blocks in the code clone using the
information of location of clone pairs and structural
blocks. Intuitively, structural block indicates the part
of code clone that is easy to move and merge.

CCShaper performs Steps 2 and 3. For example,
CCShaper extracts the following types of code clone as
refactoring-oriented code clones for Java language.

Declaration class{ }, interface{ }
Method method body, constructor, static initializer

Statement if, for, while, do, switch, try, synchronized

3 Advising Refactoring Pattern for Each
Code Clone

In the previous method described in Section 2.3, we have
only proposed the approach to extract the refactoring-
oriented clones and did not consider how to remove them.
So, the user has to decide how to remove the code clones
by him/herself.

This paper describes the answer for this problem. We
have introduced some metrics to determine how to remove
them. Detected clones are quantitatively characterized by
using the metrics which support the user how to remove
them.

3.1 Refactoring for Code Clone Removal

We use existing refactoring pattern[6], especially “Extract
Method” and “Pull Up Method”, to remove code clones.
“Extract Method” means that a fragment of source code are
extracted and redefined as a new method[6]. Originally,
this pattern is applied to too long method or too complex
part. Here, in order to remove code clones, we use “Extract
Method” to extract code clone fragments as a common new
method. “Pull Up Method” means that the same methods
defined in child classes are pulled up to its parent class[6].
This pattern is performed because of various reasons such
as design pattern. If two or more child classes which have
a common parent class include a clone method, pulling up
such methods means clone removal.

223

�� ��� ���	��
�� �
��� � � ��
��������
� ������������
�! "$#&%�'�"$(&)*'�",+�+*-
.
/�0�1 2 3 465�7�8�/ #9 : / �!;�) /=<�1 : /�> -�? 0�2 2 �*)� : 1 @�7 �*�, <61 : / -�-,'
/�0�1 2 #9 <�1 : /�> - /,0�1 2 3 465�7A8�/ '
/�0�1 2 3 4 "$#B"C'
/�0�1 2 3 465�7�8�/ #�DFE <*< '

G
� ��� ���IHFJFK�K��

�

�� ��� ���9��
����*�
���
�! 1 #&%�' 1 (�L�%*' 1 +�+6-
.
/�0�1 2 3 465�7�8�/ #9 : / �!;�) /=<�1 : /�> -�? 0�2 2 �*)� : 1 @�7 �*�, <61 : / -�-,'
/�0�1 2 #9 <�1 : /�> - /,0�1 2 3 465�7A8�/ '
/�0�1 2 3 461 # 1 '
/�0�1 2 3 465�7�8�/ #�DFE <*< '

G
�M�&� �

�
NPO
Q
R	S�TVUAW*XYR�Z
[]\

NPO
Q
R	S�TVUAW*XYR�Z
[=^

_ `�a b cedgfAh�ceiecAh�c�j�j�klnm
o�p q r s�t�uwv

m dxb y m a z�{ m�| p y
m�} k ~ o�q q `�{�b y p �wu `�_ b

|
p y
m k k hm

o�p q dxb
|
p y
m�} k m o�p q r s�t�uVv

m hm
o�p q r s cedgcAhm
o�p q r s�t�uwv

m d��
� |A| h�
�����C�������������������]�

�� ��� ���	��
�� �
��� � � ��
��������
� ������������
�! "$#&%�'�"$(&)*'�",+�+*-
.
/�0�1 2 3 465�7�8�/ #9 : / �!;�) /=<�1 : /�> -�? 0�2 2 �*)� : 1 @�7 �*�, <61 : / -�-,'
/�0�1 2 #9 <�1 : /�> - /,0�1 2 3 465�7A8�/ '
/�0�1 2 3 4 "$#B"C'
/�0�1 2 3 465�7�8�/ #�DFE <*< '

G
� ��� ���IHFJFK�K��

�

�� ��� ���9��
����*�
���
�! 1 #&%�' 1 (�L�%*' 1 +�+6-
.
/�0�1 2 3 465�7�8�/ #9 : / �!;�) /=<�1 : /�> -�? 0�2 2 �*)� : 1 @�7 �*�, <61 : / -�-,'
/�0�1 2 #9 <�1 : /�> - /,0�1 2 3 465�7A8�/ '
/�0�1 2 3 461 # 1 '
/�0�1 2 3 465�7�8�/ #�DFE <*< '

G
�M�&� �

�
NPO
Q
R	S�TVUAW*XYR�Z
[]\

NPO
Q
R	S�TVUAW*XYR�Z
[=^

_ `�a b cedgfAh�ceiecAh�c�j�j�klnm
o�p q r s�t�uwv

m dxb y m a z�{ m�| p y
m�} k ~ o�q q `�{�b y p �wu `�_ b

|
p y
m k k hm

o�p q dxb
|
p y
m�} k m o�p q r s�t�uVv

m hm
o�p q r s cedgcAhm
o�p q r s�t�uwv

m d��
� |A| h�
�����C�������������������]�

Figure 1. Example of merging two code fragments

3.2 Code Clone Metrics for Determining
Refactoring Pattern

We attempt to refine detected code clones by measuring
their characteristics to remove some of them. “Extract
Method” is the extraction of a code fragment, so it is de-
sirable that the target fragment has low coupling with the
other surrounding fragments in the method, in other words,
the variables defined outside the fragment aren’t used (re-
ferred and assigned) in the fragment. If such variables are
used, it is necessary to provide them as parameters for the
new method. Therefore, we measure the amount of such
variables.

On the other hand, “Pull Up Method” means moving
identical methods in child classes to the parent class, so
it is necessary that the child classes have common parent
class. Therefore, we measure the dispersion of clones in the
class hierarchy. The above characterizing makes it possible

to determine how each clone can be removed. In order to
make the decision, we introduce three metrics.

For the variables which are defined outside the code
clone fragment, we define two metricsNRV(S)(the Num-
ber of Referred Variables), andNAV(S)(the Number of As-
signed Variables). Here, we assume that clone setS in-
cludes code fragmentsf1, f2, · · · , fn. Code fragmentfi
refers externally defined variablesrvi1, rvi2, · · · , rvisi

, and
assigns some values to variablessvi1, svi2, · · · , sviti

.

NRV(S) = 1
n

n

∑
i=1

si , NAV(S) = 1
n

n

∑
i=1

ti ,

Intuitively, NRV(S) represents the average of the
number of externally defined variables referred in the frag-
ments of the clone setS. Additionally, NAV(S) represents
the average of the number of assigned ones.

For the dispersion in class hierarchy, we defined a
metric DCH(S)(the Dispersion of Class Hierarchy). As
described above, the clone setS includes code fragments
f1, f2, · · · , fn. Ci denotes the class which includes code
fragmentfi .

Then, if the classesC1, C2, · · · , Cn have several
common parent classes,Cp is defined as the class which
lays the lowest position in class hierarchy among the
parent classesC1, C2, · · · , Cn. Also, D(Ck, Ch) represents
the distance between classCk and classCh in the class
hierarchy.

DCH(S) = max{D(C1, Cp), · · · , D(Cn, Cp)}

The value ofDCH(S) also becomes larger as the de-
gree of the dispersion of its clone setS becomes large. If
all fragments of a clone setS are in the same class, the
value of itsDCH(S) is set as 0. If all fragment of a clone
set are in a class and its direct child classes, the value of
its DCH(S) is set as 1. Exceptionally, if classes which
have some fragments of a clone setS don’t have common
parent class, the value of itsDCH(S) is set as -1. In detail,
this metric is measured for only the class hierarchy where
the target software exists because it is unrealistic that the
user pulls up some methods which are defined in the target
software classes to library classes like JDK.

These three metrics can be used for not only “Ex-
tract Method” and “Pull Up Method”, but also “Template
Method” and “Parameterize Metghod” and so on.

4 Refactoring Support Tool: Aries

4.1 Overview

Based on the proposed method, we have implemented
a refactoring support tool namedAries with Java lan-
guage. For detection of code clones, Aries internally calls
CCShaper[7]. Figures 2(a) and 2(b) show snapshots of
Aries with the name of the windows.

Intuitively, the user specifies the distinctive clone set
on theMain Window. Then, he/she analyzes the details of

224

���������	�
��
��������������
����

���

���

���������	�
��
��������������
����

���

���

(a) Before selection

���������	�
��
��������������
����

���

���

���������	�
��
��������������
����

���

���

(b) After selection

Figure 3. Metric Graph

it on theClone Set Viewer.

4.2 Functions

The user mainly uses theMetric Graph Viewto identify,
filter, and select clone sets.

4.2.1 Metric Graph View

The Metric Graph Viewuses existing metrics,LEN(S),
POP(S), andDFL(S) [14] in addition to three metrics de-
fined in Section 3.2. The existing metrics are defined as
follows :

LEN(S) for clone setS is the maximum length of token
sequence for each one inS.

POP(S) is the number of elements (code fragments) of a
given clone setS. A clone set with a high value of
POP(S) means that similar code fragment appear in
many places.

DFL(S) indicates an estimation of how many tokens
would be removed from source files when the code
fragments in a clone setS are reconstructed. This
reconstruction is considered as the simplest case that
all code fragments ofSare replaced with caller state-
ments of a new identical routine (function, method,
template function, or so). After the reconstruction,
LEN(S)×POP(S) tokens are occupied in the source
files. In the newly reconstructed source files, they oc-
cupy k×POP(S) tokens (letk be the number of to-
kens for one caller statement) for caller statements and
LEN(S) tokens for callee routine.

Here, we explain theMetric Gragh Viewusing an ex-
ample shown in Figure 3. In theMetric Graph View, each
metric has a parallel coordinate axe. Upper and lower lim-
its are set per each metric. The hatching part is between
upper and lower limits of each metric. A polygonal line is
drawn per each clone set. In this example, values for the
clone setsS1 andS2 are drawn. In the left graph(3(a)), all

metric values ofS1 and S2 are between upper and lower
limits. So, these two clone sets are selected state. In the
right graph(3(b)), the value ofDCH(S2) is bigger than the
upper limit of DCH, which meansS2 is unselected state.
TheMetric Graph Viewenables the user to select arbitrary
clone set by changing upper and lower limits of each met-
ric. And, the result of selection is reflected on theClone
Set List.

NRV/NAV Selector In the NRV/NAV Selector, Figure
2(a), the user can decide which types of variables are
counted as metricsNRV(S) andNAV(S). Currently,
the variables are selected from the following six types,
field members of its class and parent classes and inter-
faces, “this” variable, “super” variable, and local vari-
ables.

For example, if the user is going to perform “Extract
Method” within a class, it is not necessary to count
all types of variables except local ones because these
variables can be accessed anywhere in the same class.
On the other hand, if the user is going to perform
refactoring that crosses over two or more classes like
“Pull Up Method”, these ones should be counted.

Clone Unit Selector In the Clone Unit Selector, the user
can decide which types of clone unit are shown in the
Metric Graph View. Currently, twelve types of clone
units exist as described in Section 2.3. For example, if
the user is going to perform “Pull Up Method”, he/she
should check only ‘method’ unit because the target of
this pattern is the existing methods.

Clone Set List The Clone Set Listshows all clone sets
which are selected in theMetric Graph View. And
the list can sort clone sets in ascending and descend-
ing sequence of each metric value. Double-clicking a
clone set on this view is a trigger to run theClone Set
Vieweras shown in Figure 2(b). It shows more detail
information of the selected clone set.

Metrics Value Panel The Metrics Value Panelshows the
values of all metrics of clone set selected in theMain
Window.

Code Fragment List The Code Fragment Listshows the
list of all code fragments included in the selected clone
set. Each element of the list has three kinds of infor-
mation, a path to each file which includes the code
clone fragment, the location of the code clone in the
file(the number of beginning line, beginning column,
end line and end column), and the number of token
included in the code clone fragment.

Source Code ViewTheSource Code Viewworks cooper-
atively with theCode Fragment List. The user can ob-
tain the actual source code corresponding to the code
clone fragment selected in theCode Fragment List.
The fragment including the clones is emphatically dis-
played.

225

��������� �
	�����
������ ��� ������������� �!�#" ���$��%&� '�" %�(��)�!�*��+�� ,-�

'�" %�(��/.0(�� �&�!�#" ���$��%��

��������� �
	�����
������ ��� ������������� �!�#" ���$��%&� '�" %�(��)�!�*��+�� ,-�

'�" %�(��/.0(�� �&�!�#" ���$��%��

(a) Main Window

���������	��

�	���������
� ��� ���
����� ������
 � !���"#
 ���	�

$%� !&�����'�(��������� �*) +(,��.-/+�0.�1�
� ���

���������	��

�	���������
� ��� ���
����� ������
 � !���"#
 ���	�

$%� !&�����'�(��������� �*) +(,��.-/+�0.�1�
� ���

(b) Clone Set Viewer

Figure 2. Snapshots of Aries

NRV/NAV List The NRV/NAV Listshows the list of all
variables which are used and defined externally in the
code fragment which is selected in theCode Fragment
List. Each element of this list has three kinds of infor-
mation, the name of its variable, the type of its variable
and the count of used.

4.3 Refactoring Procedure

Now, we show example refactoring processes “Pull Up
Method” and “Extract Method”.

If the user wants to perform “Pull Up Method”, the
following conditions should be considered for example.

PC1 The target is ‘method’ unit code clone.

PC2 The value ofDCH(S) is more than 1.

Usually, ”Pull Up Method” is performed on existing
methods, so (PC1) should be considered. And, the classes
whose method includes target code clones have to inherit
common parent class, so (PC2) should be considered. Next,
the refinement process is as follows. At first, the user
checks only ‘method’ unit checkbox on theClone Unit Se-
lector, which is reflected to theMetric Graph View. Next,
the user sets the lower limit ofDCH(S) as more then 0.
This operation is reflected to theClone Set List. As the re-
sult, the list shows the clone sets which meet the conditions
(PC1) and (PC2).

On the other hand, if the user wants to perform “Ex-
tract Method”, the following conditions should be consid-
ered for example.

EC1 The target is ‘statement’ unit code clones.

EC2 Tthe value ofDCH(S) is 0.

EC3 The value ofNAV(S) is less than 1.

Since “Extract Method” is usually performed on a
code fragment in a method, (EC1) is considered. Next, if
all fragments of clone setS exist in the same class, it is
easy to merge them. So, (EC2) is considered. The reason
to consider (EC3) is that if some variables which are exter-
nally defined are assigned in a fragment, it is necessary to
make them parameters of the new extracted method, and to
return them to its method caller place to reflect the values
of them. It is necessary to contrive like making new data
class if two or more values are assigned. The refinement
process is as follows. At first, the user checks only ‘state-
ment’ unit (do, if, for, switch, synchronized, try, while)
checkbox on theClone Unit Selector, which is reflected
to theMetric Graph View. Next, the user checks only ‘lo-
cal variable’ on theNRV/NAV Selectorbecause other type
variables can be accessed as far as in the same class. Next,
the user sets the range ofDCH(S) as some value between
0 and 1(0≤ DCH(S) ≤ 1), and the upper limit ofNAV(S)
as less then 2. As the result of these operations, theClone
Set Listshows only the clone sets which meet above three
conditions (EC1), (EC2) and (EC3).

226

5 Case Study

5.1 Overview

In order to evaluate the usefulness of Aries, we have ap-
plied it to Ant 1.6.0[1]. It includes 627 files and the size
is 180,000 LOC. In this case study, we set 30 tokens as
the length of minimum code clone of CCShaper(intuitively,
thirty tokens correspond to about five LOC). The value 30
is the empirical value which was derived from our previous
studies. Then, we tried to perform “Extract Method” and
“Pull Up Method” to code clones detected by Aries. It took
2 minutes to detect code clones, and we got 154 clone sets
from Ant. The followings are the number of clones.

All detected clones 154
“Extract Method” 59
“Pull Up Method” 20

The conditions of “Extract Method” and “Pull Up
Method” are the same as ones described in Section 4.3. In
Sections 5.2 and 5.3, we describe the details of refactor-
ing using Aries. Also, after removing several clone sets,
we performed regression tests to confirm the behavior of
Ant. In the regression test, we used totally 220 test cases
included in Ant package. These test cases used JUnit[8],
which is one of regression testing frameworks. So, we
could easily perform all test cases and took about 4 min-
utes to perform all test cases.

5.2 “Extract Method”

As described above, we got 59 clone sets as the result using
the “Extract Method” conditions described in Section 4.3.
Then, we browsed and examined all source codes of each
clone set, and classified them to the following four groups:

Group 1 Clone sets that can be removed only by extract-
ing them and making a new method in the same class.

Group 2 Clone sets that can be removed by extracting
them and making a new method with setting the ex-
ternally defined variables as parameters of it because
such variables are used in the clone.

Group 3 Clone sets that can be removed by extracting
them and making a new method with setting the ex-
ternally defined variables as parameters of it and with
adding parameters of return statement to deliver the
results to the variables used in the caller.

Group 4 Clone sets that can be removed but need a lot of
effort.

Three clone sets were classified to Group 1. Figure 4
shows a source code of one of them. In this ‘if-statement’
clone, no externally defined variable was used. So, it was
very easy to extract it as a new method in the same class.

if (!isChecked()) {
// make sure we don’t have a circular reference here
Stack stk = new Stack();
stk.push(this);
dieOnCircularReference(stk, getProject());

}

Figure 4. Example of Extract Method in Group 1

if (javacopts != null && !javacopts.equals("")) {
genicTask.createArg().setValue("-javacopts");
genicTask.createArg().setLine(javacopts);

}

Figure 5. Example of Extract Method in Group 2

thirty-four clone sets were classified to Group 2. Fig-
ure 5 shows a source code of one of them. In this ‘if-
statement’ clone, the variable “javacopts” was a field mem-
ber of its class, and the variable “genicTask” was a local
variable. So, it was necessary to set “genicTask” as a pa-
rameter of a new method to extract this code clone in the
same class.

if (iSaveMenuItem == null) {
try {

iSaveMenuItem = new MenuItem();
iSaveMenuItem.setLabel("Save BuildInfo To Repository");

} catch (Throwable iExc) {
handleException(iExc);

}
}

Figure 6. Example of Extract Method in Group 3

Fifteen clone sets were classified to Group 3. Figure
6 shows a source code of one of them. In this ‘if-statement’
clone, the variable “iSaveMenuItem” was externally de-
fined. Moreover, the value was assigned to it. So, it was
necessary to set “iSaveMenuItem” as a parameter of a new
method and add ‘return statement’ to reflect the result of
assignment to the caller.

Seven clone sets were classified to Group 4. Figure 7
shows a source code of one of them. In this ‘if-statement’
clone, some ‘return-statements’ were used. So, a lot of ef-
fort would be necessary to extract it. In this case study,
we didn’t remove these four clone sets because we thought
that removal of them was strongly dependent on the skill of
each programmer.

5.3 “Pull Up Method”

Next, we describe the results of applying ‘Pull Up
Method”. As described above, we got 20 clone sets as the
result using the “Pull Up Method” conditions described in
Section 4.3. Then, we browsed and examined all source
codes of each code clone, and classified them to the fol-
lowing four groups:

Group 5 Clone sets that can be removed only by moving

227

if (name == null) {
if (other.name != null) {

return false;
}

} else if (!name.equals(other.name)) {
return false;

}

Figure 7. Example of Extract Method in group 4

them to the common parent class.

Group 6 Clone sets that can be removed by moving them
to common parent class after adding variables which
are defined outside.

Group 7 Clone sets that can be removed by moving them
to common parent class and adding a new method
which needs parameters of outside variables and re-
turn statement. Existing method which includes the
pull-uped clones can be deleted or changed so that
they call the new method from the inside. If they are
deleted, it is necessary to change all its caller places.

Group 8 Clone sets that need much contrivance to re-
move.

Here, no clone set was classified to Group 5.

private void getCommentFileCommand(Commandline cmd) {
if (getCommentFile() != null) {

/* Had to make two separate commands here because
if a space is inserted between the flag and the
value, it is treated as a Windows filename with
a space and it is enclosed in double quotes (").
This breaks clearcase.

*/
cmd.createArgument().setValue(FLAG_COMMENTFILE);
cmd.createArgument().setValue(getCommentFile());

}
}

Figure 8. Example of Pull Up Method in group 6

Ten clone sets were classified to Group 6. Figure 8
shows a source code of one of them. In this ‘method’
clone, the variable “this” was omitted at calling method
“getCommentFile” which was defined in the same class.
The variables “this” and “FLAG_COMMENTFILE”, which are
field members of the same class, are externally defined. To
adapt “Pull Up Method” pattern, with adding two parame-
ters, we pulled up them to the common parent class.

Two clone sets were classified to Group 7. Figure 9
shows a source code of one of them. In this method clone,
the variable “map” was externally defined, and some values
were assigned to it. Here, the methods named “setError”
was defined in the common parent class. So, to pull up
this clone set to the common parent class, it was necessary
to add a parameter and return statement for the variable
“map”.

Eight clone sets were classified to Group 8. Figure
10 shows a source code of one of them. In this method,

public void verifySettings() {
if (targetdir == null) {

setError("The targetdir attribute is required.");
}
if (mapperElement == null) {

map = new IdentityMapper();
} else {

map = mapperElement.getImplementation();
}
if (map == null) {

setError("Could not set <mapper> element.");
}

}

Figure 9. Example of Pull Up Method in group 7

public void execute() throws BuildException {
Commandline commandLine = new Commandline();
Project aProj = getProject();
int result = 0;

// Default the viewpath to basedir if it is not specified
if (getViewPath() == null) {

setViewPath(aProj.getBaseDir().getPath());
}

// build the command line from what we got. the format is
// cleartool checkin [options...] [viewpath ...]
// as specified in the CLEARTOOL.EXE help
commandLine.setExecutable(getClearToolCommand());
commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);
if (Execute.isFailure(result)) {

String msg = "Failed executing: " +
commandLine.toString();

throw new BuildException(msg, getLocation());
}

}

Figure 10. Example of Pull Up Method in group 8

the method “checkOptions” was called. This method was
defined in the same class. Here, the methods named “get-
Project”, “getViewPath” and “getLocation” were defined
by using common parent class. And, the variable “com-
mandLine”, which was a parameter of this method, was
defined and used in the clone. So, this method caller made
it difficult to apply “Pull Up Method” to this clone set. But,
the method “checkOptions” was defined in each child class.
We can apply “Template Method” pattern[6] on them. At
first, we move the clone to the common parent class. Next,
we define an abstract method “checkOptions” in the com-
mon parent class.

6 Related Works

There are several related studies about refactoring of code
clones. Komondoor et al.[10] has proposed a refactoring
method using program slicing. In this method, a program
dependence graph is constructed by analyzing target source
codes. Identical or similar parts are detected as code clone.
This detection is greatly precise because of considering
control and data flow of program. Moreover, it can de-
tect reordered and intertwined clones[10] which cannot de-

228

tected by CCFinder. But, time complexity of constructing
program dependence graph isO(m2)(m is the number of
statement and expression included in target source codes),
which makes it difficult to apply this method to large scale
software.

Also, Balazinska et al.[2] have proposed an approach
to extract code clones using several metrics. Considering
the context of code clone, it seems to be practical. On the
other hand, since the unit of the code clone is restricted
to ‘function’ and ‘method’, it makes difficult to perform
refactoring for smaller unit.

JDT on Eclipse[5] is well-known tool for support-
ing refactoring activity. JDT semi-automatically modifies
source code according to the user’s operation that specifies
where should be refactored and how to modify them. All
influenced parts by its refactoring are also modified auto-
matically. If a method name is changed, all caller parts of
the method are modified. The user doesn’t need to per-
form troublesome modification manually. We consider that
Aries with such tools can totally support refactoring activ-
ity. Aries can specify where should be refactored and how
to modify them. He/She refactors, with JDT, the specified
part using the pattern indicated by Aries.

7 Conclusion

In this paper, we have proposed a new refactoring method
for code clones, and implemented a refactoring support
tool, Aries. The code clone analysis algorithm used in
Aries is so fast that it can apply industrial large-size soft-
ware system. Also, we have applied Aries to Ant. Proposed
metrics well characterized code clones, and most of refined
them could be removed.

As future works, we are going to perform more de-
tail analysis for code clones. For example, we are going
to consider the effectiveness of refactoring. Currently, we
refine code clones based on the judgment whether they can
be removed or not. If we can judge whether the code clones
should be removed or not, the supporting of the refactoring
will become more effective.

Acknowledgment

This work is partly supported by Japan Science and Tech-
nology Corporation, Research and Development for Ap-
plying Advanced Computational Science and Technology,
Grant-in-Aid for Young Scientists (B)(No:15700031) of
Japan Society for the Promotion of Science, and the Com-
prehensive Development of e-Society Foundation Software
program of the Ministry of Education, Culture, Sports, Sci-
ence and Technology.

References

[1] Ant, http://ant.apache.org , 2003.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague and
K. Kontogiannis, “Advanced clone-analysis to sup-
port object-oriented system refactoring”,Proc. the 7th
Working Conference on Reverse Engineering, pp98-
107, Brisbane, Australia, Nov. 2000.

[3] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and L.
Bier, Clone Detection Using Abstract Syntax Trees,
Proc. International Conference on Software Mainte-
nance 98, pp368-377, Bethesda, Maryland, Mar. 1998.

[4] S. Ducasse, M. Rieger, and S. Demeyer,A Language
Independent Approach for Detecting Duplicated Code,
Proc. International Conference on Software Mainte-
nance 99, pp109-118, Oxford, England, Aug. 1999.

[5] Eclipse,http://www.eclipse.org , 2004.

[6] M. Fowler, Refactoring: improving the design of exist-
ing code, Addison Wesley, 1999.

[7] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K.
Inoue, On software maintenance process improve-
ment based on code clone analysis, Proc. 4th Interna-
tional Conference on Product Focused Software Pro-
cess Improvement, pp.185-197, Rovaniemi, Finland,
Dec. 2002.

[8] JUnit, http://www.junit.org , 2003.

[9] T. Kamiya, S. Kusumoto, and K. Inoue,CCFinder: A
multi-linguistic token-based code clone detection sys-
tem for large scale source codeIEEE Transactions on
Software Engineering, vol.28, no.7, pp.654-670, Jul.
2002.

[10] R. Komondoor and S. Horwitz,Using slicing to iden-
tify duplication in source code, Proc. the 8th Interna-
tional Symposium on Static Analysis, pp.40-56, Paris,
France, Jul. 2001.

[11] J. Krinke,Identifying Similar Code with Program De-
pendence Graphs, In Proc. of the 8th Working Con-
ference on Reverse Engineering, pp. 301-309, Suttgart,
Germany, Oct. 2001.

[12] J. Mayland, C. Leblanc, and E.M. MerloExperiment
on the automatic detection of function clones in a soft-
ware system using metrics, Proc. International Confer-
ence on Software Maintenance 96, pp.244-253, Mon-
terey, California, Nov. 1996.

[13] T.M. Pigoski, Practical Software Maintenance, John
Wiley and Sons, New York, Oct. 1996.

[14] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue,Gem-
ini: Maintenance Support Environment Based on Code
Clone Analysis, 8th International Symposium on Soft-
ware Metrics, pp67-76, Ottawa, Canada, June, 2002.

229

