
Assertion with Aspect

Takashi Ishio†, Toshihiro Kamiya‡, Shinji Kusumoto†, Katsuro Inoue†
† Graduate School of Engineering

Science,
Osaka University

1-3 Machikaneyama-cho, Toyonaka,
Osaka 560-8531, Japan

‡ PRESTO, Japan Science and
Technology Agency

1-3 Machikaneyama-cho, Toyonaka,
Osaka 560-8531, Japan

{t-isio, kamiya, kusumoto, inoue}@ist.osaka-u.ac.jp

March 1, 2004

1 Solution Name: Assertion with Aspect

We propose to use aspects to declare assertion. Assertion consists of an assertion statement,
preconditions and postconditions[3].

2 Motivation

Practical programming languages such as Java and C++ have assert as a language con-
struct, a function of the standard library, or a macro of a preprocessor. The behavior of
assert(expr) statement is shown as follows:

assert(true) → do nothing
assert(false) → throw a runtime exception

Currently, all the assumptions are not described as assertions. For example, programmers
often write a method along with assumptions for the usage or the purpose of the method.
Programmers usually write such assumptions in a comment, for example, “This method
FOO is to be called from method BAR”. When another programmer reuses the method
or adds a new aspect, he or she may accidentally break an assumption. Since the violated
assumption may cause a defect, we should write an assumption as an assertion statement
to check the assumption in runtime.

An assertion statement represents an assumption about the method behavior and the
states of the related objects such as a method caller object, a callee object and their own
objects. However, an assertion statement cannot refer to the control flow information (con-
text of the method) of the program, and cannot explicitly represent the state consisting of
multiple objects’ states. We propose to write these assumptions as assertion extended for
AOP.

In this manuscript, we use an example of a file updater class written in Java. This
class has one public method update_file and three private methods called from the pub-
lic method. Programmers have some assumptions in the method and each assumption is
described as a comment with the keyword ASSUMPTION.

1



class FileUpdater {

File file;
OutputStream out;

public FileUpdater(File f) {
file = f;

}

public void update_file(Data data) {
open_file();
write_file(data);
close_file();

}
private void open_file() {
//ASSUMPTION 1: out is null and f is writable
out = new FileOutputStream(f);

}
private void write_file(Data data) {
//ASSUMPTION 2: this method MUST be called from update_file
out.write(data);

}
private void close_file() {
out.close();
out = null;

}
}

In Section 3, we replace the comments of assumptions to our assertion.

3 What is assertion?

In order to distinguish our proposal from original assert, we use a keyword assume. The
default behavior of assume(expr) is the same as assert(expr).

Unlike the traditional assertion, a predicate method can be used in an expression of
assume statement. We use a term predicate method as a method which returns a boolean
value.

Programmers use arbitrary named predicate methods in assume and implement the
predicate methods in aspects. We show an example replacing ASSUMPTION 1 to assume
with a predicate method as follows:

private void open_file() {
assume(can_open_file(f, out)); //ASSUMPTION 1: out is null and f is writable
out = new FileOutputStream(f);

}
aspect FileUpdaterAssumptions {
// This is the implementation of the predicate method can_open_file.
ASSERT boolean can_open_file(File f, OutputStream out) {
return (out == null) && f.canWrite();

2



}
when violated: can_open_file(..) {
System.err.println("can_open_file assertion is violated.");

}
}

In order to clarify that the method can_open_file is a predicate method, ASSERT
keyword is introduced as a modifier of the method. We use a new language construct
when violated. This is a kind of advice executed when a predicate method returns false.
This advice is used to execute a code of cleaning up system resources or of logging an
error before the program stops. Although programmers can write an error handling code
using try statement, our approach allows programmers to add a new error handling using
context-specific information.

In order to refer to control flow information in a predicate method, we introduce an-
other new language construct cflow to write an assertion statement about the control flow.
cflow(obj.aMethod) represents a boolean value whether aMethod of the object obj is con-
tained or not in the call stack.

// call open_file before this method is called
private void write_file(Data data) {
assume(can_write_file(this)); //ASSUMPTION 2: this method must

// be called from update_file
out.write(data);

}
aspect FileUpdaterAssumptions {
ASSERT boolean can_write_file(FileUpdater obj) {
return cflow(obj.update_file);

}
:
:

}

The advantages of our approach are following:
First, our approach allows programmers to write an assertion statement at arbitrary

execution points. Using AspectJ, programmers can write an aspect to inject assert state-
ments into classes. Programmers easily add preconditions and postconditions to a method.
However, programmers cannot express join points such as “the beginning of this loop”.
Our approach allows programmers to use a predicate method in an assertion statement.
A predicate method works as a user-defined join points. Moreover, the assertion tells the
programmer when the assumption is checked. Such an explicitly defined assertion statement
supports programmers’ predictability. We discuss the predictability in Section 5.

Second, our approach separates a context-specific assumption from the other assump-
tions, by using a context-specific implementation of a predicate method based on cflow
construct. AspectJ also allows programmers to use the control flow information using cflow
pointcut designator. Our cflow expression easily refers to such information. We discuss the
comprehensibility in Section 4.

Finally, our approach enhances reusability of a program. Programmers expect that they
can freely add and remove assertions (constraints) of a class since assertions do not modify
the behavior of the original class. It enables programmers to manage application-specific
constraints to improve the reusability of classes. Reusability is important in the software
evolution process. We discuss reusability and evolvability in Section 6.

3



4 Does Assertion Support Comprehensibility?

4.1 General properties, assumptions, hypotheses about compre-
hensibility

An assertion can be considered as a kind of document for programmers. A programmer using
or modifying a method reads assertions to understand the assumptions of the method.

4.2 How assertion supports comprehensibility

A programmer usually puts assumptions about the usage of a method. Programmers often
write such assumptions as comments, not as assertion statements since programmers cannot
express some assumptions about control flow and state of multiple objects. Using our
approach, programmers can write such assumptions as assertion statements.

Assertion statements are executable. Therefore, programmers can test whether an as-
sertion statement is correct or not, in the other words, whether the assumption is satisfied
in the program execution. An assertion is more reliable than a comment since the comment
may become obsolete while the software evolves.

4.3 How assertion reduces comprehensibility

When an assertion statement is redundant or complex, the programmer cannot understand
the assertion statement.

4.4 Conclusion about comprehensibility

Our approach allows programmers to express assumptions about control flow. When asser-
tions are simple and precise, the assertions aid programmers to understand the method.

5 Does Assertion support predictability?

5.1 General properties, assumptions, hypotheses about predictabil-
ity

Assertion statements are to check the state of the program and do not modify the state.

5.2 How assertion supports predictability

Programmers usually regard an assertion as a statement without a side effect. Programmers
can understand what properties are checked by the proposed assertion statement since the
programmers easily find the aspects implementing the predicate method using grep or the
similar tools.

An assertion also supports predictability of the method since assertions declared as pre-
/postconditions express the method functionalities.

5.3 How assertion reduces predictability

When a method for assertions has a side effect, the code may be difficult to understand.
For example:

4



// isSorted sorts an array.
ASSERT boolean isSorted(Array array) {
if (!array.sorted()) array.sort();
return true;

}

void useSortedArray(Array array) {
assume(isSorted(array)); // the parameter must be a sorted array.
doSomething(array);

}

void user() {
useSortedArray(getUnsortedArray()); // no violation is occurred.

}

The method isSorted does sort an array instead of checking whether the array is sorted
or not. This will be surprising for another programmer reading the method user() since it
is hard to recognize that isSorted sorts an array from its name.

5.4 Conclusion about predictability

Our approach can support predictability when the programmers use assertion to express
assumptions.

A Method with a side effect like the above example may cause a problem when it is
used in an assertion statement. When the side-effect free methods like const in C++ are
available, we should enforce programmers to write predicate methods as const methods.

6 Does Assertion support evolvability?

6.1 General properties, assumptions, hypotheses about evolvabil-
ity

In software evolution process, software reuse is important. The unit of the reuse is a method
or a class. When programmers want to reuse a functionality of a method, it is better that
the programmers can reuse the method without modifications.

6.2 How assertion supports evolvability

Assertions usually help programmers to understand what a method does. Programmers can
understand what the properties of the objects are required at the location of each assume
statement. For example, when the programmers give invalid parameters to a method, as-
sertion can detect it[4].

On the other hand, when a programmer creates a class, the programmer can separate a
class from its assertions. When another programmer wants to reuse the class, the program-
mer decides whether he (or she) adopts each assertion or not. The programmer can decide
to add new application-specific (strict) assertions to adapt a generic reusable class which
has loose constraints.

5



6.3 How assertion reduces evolvability

Assertions sometimes prevent to reuse a method or a class when the assertions are too strict.
The programmer should rewrite such a method or a class more general than original.

6.4 Conclusion about evolvability

An assertion supports reusing a program. However, it needs to prepare a mechanism or a
design guideline to prevent a programmer writing a superfluous assumption.

7 Impact on other software engineering properties

We have described reusability of classes and methods in Section 6.

8 Discussion and Conclusion

We have proposed an approach to use aspects to declare assertions. Since an assertion allows
programmers to express their assumptions, an assertion improves the comprehensibility and
the predictability of the software.

Although an assertion is not a novel idea, there seems to be few knowledge how a
programmer should write assertion in AOP.

The proposed approach allows programmers to write implementation of an assertion
statement in an aspect with assume statement. This approach enables programmers to
manage and extend assertions as aspects. We also enhance an assertion with cflow expres-
sion to contain the context-specific assumptions.

We have no ways to prevent programmers to implement a predicate method with a
side effect. Such an assertion statement may confuse a programmer. Therefore, when a
programmer can declare a method as a side-effect free (using a language construct such as
const in C++), the assertion process tool will enforce the programmer to use methods to
reduce side-effect problem.

Current design of the proposed language construct is a crude one. In the future work,
we will refine the design and implement a prototype as a preprocessor for AspectJ.

References

[1] AspectJ Team: The AspectJ Programming Guide.
http://dev.eclipse.org/viewcvs/indextech.cgi/˜checkout˜/aspectj-
home/doc/progguide/

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J. and
Irwin, J.: Aspect Oriented Programming. In Proc. of the 11th annual European Con-
ference for Object-Oriented Programming (ECOOP97), vol.1241 of LNCS, pp.220-242,
1997.

[3] Meyer, B.: Object Oriented Software Construction, New York, NY, Prentice Hall, 1988.

[4] Romanovsky, A.: Exception Handling in Component-based System Development. In
Proc. of the 25th Annual International Computer Software and Application Conference
(COMPSAC 2001), pp. 580-586, 2001

6


