
1Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Classification of Java Programs
in SPARS-J

Kazuo Kobori, Tetsuo Yamamoto,
Makoto Matsusita and Katsuro Inoue

Osaka University

2Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Contents
Background

SPARS-J
Reuse

Similarity measurement techniques
Characteristic metrics method
Inclusive relation method

Examples of its application
Summaries and Future Works

3Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Background
SPARS-J is the web-based search engine for
support of Software Reuse (for Java)

A lot of parts are managed in this system
source codes from open-source projects and public access files
repository which stores 130,000 classes

Components are classified by functions.
In order to evaluate use-relation of every function
Similar components may have the same functions

Measurement of similarity between Components is needed.

4Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Reuse
Similar components are made by Reuse
Reuse is roughly divided into following two:

1. Reused as it is.
Components are copied and used as it is.
Some elements may be changed.

2. Reused by changing code.
Components are copied and used with additional
codes.
Some methods and some variables are mainly added.

5Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Similarity measurement technique

Character string comparison
has so far been used for similar comparison of programs

the high analysis cost per one comparison
Hugeness of the total number of times of comparison

It is unsuitable for SPARS-J

We need much lower cost method

6Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Similarity measurement technique
in SPARS-J

Characteristic metrics method
In order to grasp Reuse as it is
Metrics show the constitution of a component
Metric is integer
Only comparison of metrics is used for a similarity measurement

reduction of calculation cost

Inclusive relation method
In order to grasp Reuse by minor change
By using the code clone information between components, we
analyze inclusive relation
It has a scalability which can bear practical analysis.

Analysis against millions of lines in practical time.

7Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Characteristic Metrics

Characteristic metrics is measured from two
viewpoints.

Complexity
number of methods, cyclomatic number, and etc.
It shows a structural characteristic.

Token-composition
number of appearances of each token.
Token ＝ Reserved + Symbol + Operator + Identifier
（96 types） （49） （9） （37）
（１）

It shows a surface characteristic.

8Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Extraction of Characteristic Metrics

void
int

Ttotal

identifer

Value Token

・・・

N of method

N of interface

N of Cyclomatic
valueComplexity

・・・

public class sample {
int a , b , s ;
char c ;

public void main () {
c = ‘ m ’ ;
if (c = = ‘ m ’) {

s = sum (a , b) ;
}
else {

s = a + b;
}

public void sum (int p , int q) {
return (p + q) ;

}
}

2

9Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Extraction of Characteristic Metrics

void
int

Ttotal

identifer

Value Token

・・・

N of method

N of interface

N of Cyclomatic
valueComplexity

・・・

2

・・・

0

2 Complexity
metrics

public class sample {
int a , b , s ;
char c ;

public void main () {
c = ‘ m ’ ;
if (c = = ‘ m ’) {

s = sum (a , b) ;
}
else {

s = a + b;
}

public void sum (int p , int q) {
return (p + q) ;

}
}

10Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Extraction of Characteristic Metrics

void
int

Ttotal

identifer

Value Token

・・・

N of method

N of interface

N of Cyclomatic
valueComplexity

・・・

2

・・・

0

2

・・・
23

3
2

75

Token
composition
metrics

Complexity
metrics

public class sample {
int a , b , s ;
char c ;

public void main () {
c = ‘ m ’ ;
if (c = = ‘ m ’) {

s = sum (a , b) ;
}
else {

s = a + b;
}

public void sum (int p , int q) {
return (p + q) ;

}
}

11Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Judge Condition -1-
Step1: We set thresholds of each complexity metrics

1Nesting depth

thresholdMetric

0N of classes

1N of methods
2N of method calls

0N of interfaces

0N of Cyclomatic

12Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Judge Condition -1-
We make hash key by
Complexity metrics

We make Hash Table in which Hash Key
corresponds to components

DB

[0. 0. 0]= null

[10. 62.124]= Cp.A
[10. 62.125]= Cp.B，Cp.C
[10. 62.126]= null

[254.254.254]= Cp.Z

・・

・・

・

・

8bit 8bit8bit
metric

A

Hash Key
(24bit)

＝

If we judge new component P
Hash Key of Cp.P＝[10.62.125]
Thresholds of metric[A,B,C]＝[0.0.1]

[10.62.124]
[10.62.125] We search these 3 keys
[10.62.126]

metric
B

metric
C

We now similarity components
down to Component A , B and C.

13Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Judge Condition -2-

A

void
int

Ttotal

identifer

BComponent

・・・
・・・
23

3
2

75

・・・
25

4
2

76

■D(A,B): Non-similarity between Component A and B

D(A,B)
diff(A,B)

min(Ttotal（A）, Ttotal（B）)
＜ threshold

The sum of the difference of TCM

Step2 : Components are judged by characteristic metrics

Token
Composition
Metrics

14Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Pattern of Reuse
1. Reused as it is.

It can be extracted by judging similar components.

2. Reused by changing code.
It can be extracted not by judging similar components,

but by detecting inclusive relation.

15Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Pattern of Reuse
1. Reused as it is.

It can be extracted by judging similar components.

2. Reused by changing code.
It can be extracted not by judging similar components,

but by detecting inclusive relations.

16Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Inclusive relation
In characteristic metrics method

One component contains another component completely.
However, If the difference of size is more than the
threshold.
In this case, these two components can’t be judged to be
similar.

17Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Inclusive relation method

In order to grasp reuse with code addition
By using the code clone information
between components, we analyze inclusive
relation

Use of a code clone detection tool ：
｢CCFinder」*

It has a scalability which can bear practical analysis.
– Analysis against millions of lines in practical time.

*Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, "CCFinder: A Multi-Linguistic Token-
based Code Clone Detection System for Large Scale Source Code," IEEE Trans. Software
Engineering, vol. 28, no. 7, pp. 654-670, (2002-7).

18Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

The Inclusive Relations
in Software Components

x⊆y ⇔ LOC(x)× Δ ≦ Cy(x)

Δ←thresholdAbout Component x:
Total Line of Codes of x ＝ LOC(x)
The Number of Lines of x which is also contained in
component y as a code clone ＝ Cy(x)

19Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Step 1: Code clone pair information is
calculated through analysis of CCFinder.

CCFinder

・
・
・
・
・
・
・

Clone pair information

components

The Extraction Method of
Inclusive Relation -1-

20Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Step2: For each component X, check this formula

Code Clone

Component X Component Y

over
Threshold

?

X⊆Y
yes

The Extraction Method of
Inclusive Relation -2-

x⊆y ⇔ LOC(x)× Δ ≦ Cy(x)

21Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Step３: By comparing metrics, this judges
whether the extracted pair is an inclusive
relation.

■Cp.X ⊆ Cp.Y

Cp.X

void
int

Ttotal

identifer

Cp.Ymetric

・・・
・・・
23

3
2

75

・・・
40

4
2

102

＜

＜

＜

＜

＜

The Extraction Method of
Inclusive Relation -3-

22Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Application Result
Characteristic metrics method

We show the cost scale figure
Inclusive relation method

We show some examples which are in inclusive
relation

23Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Application Result -1-
■ calculation time of Characteristic Metrics Method

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000

部品数

秒

Number of Components

sec

※calculation time of characteristic string method = 24.3 sec (at 500 components)

24Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Application Result -2-

PipedInputStreamPipedReader

Code Clone

■ Example of a extracted inclusive relation

⊆

void receive()

int read()

void close()

void connect()

void receive()

int read()

void close()

void connect()

int available()
LOC: 142LOC: 131

25Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Application Result -2-

FilePermmission

PropertyPermission
SocketPermission

Format NumberFormat

■other Examples of a extracted inclusive relation

⊆

⊆

LOC:207LOC:25

LOC:457

LOC:249

LOC:135

26Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Summary And Future Work
Summary

We have suggested similarity measurements
Characteristic metrics method
Inclusive relations method

Future Work
Evaluation of system performance
Adjustment of a threshold

