On the Prediction of Fault-proneness in Object-Oriented

Development

Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue

Graduate School of Engineering Science, Osaka University, Japan
1-3 Machikaneyama, Toyonaka, Osaka
560-8531, Japan
Tel: +81-6-6850-6571
Fax: +81-6-6850-6574
E-mail: kamiyaQics.es.osaka-u.ac.jp

ABSTRACT

This paper proposes a new method to estimate the fault-
proneness of the class in the early phase, using several
complexity metrics for object-oriented software.

Keywords
Metrics, object modeling technique, object-oriented de-
velopment, fault estimation

1 INTRODUCTION

In attempt to reduce the number of delivered faults, it
was reported that most companies spend between 50-
80% of their software development effort on testing[4].
Therefore, reducing the effort of testing is a key to high
productivity in software development. Software review
is one of the most effective techniques to reduce the
testing effort. Reviews can detect many faults before
testing, with lower cost compared to testing.

In order to effectively review and test the software prod-
ucts, it is needed to identify the fault-prone modules so
that review and testing effort can be concentrated on
the modules[1]. Chidamber and Kemerer proposed six
complexity metrics for object-oriented software to eval-
uate the main characteristics which only object-oriented
software essentially possess [3].

However, in [l]and [3], the metrics were applied to
the source code. The estimation of the fault-proneness
should be done in the early phase to effectively allocate
the effort for fixing the faults.

This paper proposes a new method to estimate the fault-
proneness of the class in the early design phase, using
several complexity metrics for object-oriented software.
In the proposed method, we introduce four checkpoints
into the analysis/ design/ implementation phase based

on OMTI9].

2 PROPOSED METHOD

We regard the analysis/ design/ implementation phase
as a series process in which the information about soft-
ware product gradually increase as the process pro-
gresses.

We introduce four checkpoints in the development pro-
cess from the viewpoint of measurement and identify

which information has been added to the design speci-
fication at each checkpoint. We define the subset of the
conventional metrics applicable to the design specifica-
tion developed at each checkpoint. Then we estimate
the fault-proneness of the class using the multivariate
logistic regression analysis with the applicable metrics.
We employed Chidamber and Kemerer’s six metrics|[3]
and NIV[7] as object-oriented design metrics(see Table
2).

(CP1)Entity and relation:

At the CP1, reference-relationship between classes
and attributes of the classes have been determined.
Reference-relationship corresponds to the coupling
between classes and the attribute corresponds to
the instance variable. NIV can be calculated from
the attribute information. Though CBO can be
calculated from the reference-relationship between
classes, reference to the reused class in the class
library is not clearly described and thus the value
of CBO is not correct.

(CP2)Structure and inheritance

At the CP2, derivation-relationship between classes
and the methods in the classes have been de-
termined. In order to determine derivation-
relationship, the class hierarchy tree is clearly de-
scribed. Thus, DIT can be calculated from the
derivation-relationship. WMC can be calculated
from the information of the methods. Since the
reused classes are determined, the value of CBO
can be calculated correctly.

(CP3)Algorithm

At the CP3, algorithms in each method and call-
relationship between the methods are determined.
Based on the information, LCOM and RFC can be
calculated.

(CP4)Implementation

CP4 is the checkpoint where source code has been
implemented. For each class, SLOC (Source Lines
Of Code) can be calculated.

Table 1: Checkpoint and available metrics

| Checkpoint Added Information

| Available Metrics

(CP1)Entity and relation Reference-

attributes of class

relationship among classes,

NIV, CBON

(CP2)Structure and inheritance
reused library

Class hierarchy, methods,

NIV, CBON, CBOR, CBO, WMC, DIT, NOC

(CP3)Algorithm Algorithm of the method NIV, CBON, CBOR, CBO, WMC, DIT,
NOC, RFC, LCOM
(CP4)Implementation Source code NIV, CBON, CBOR, CBO, WMC, DIT,

NOC, RFC, LCOM, SLOC

CBO, DIT, LCOM, NOC, RFC, and WMC are Chidamber and Kemere’s metrics[3]. NIV is number of instance
variables in the classes[7]. CBON is CBO for Newly-developed classes, and CBOR is CBO for Reused classes (see
text of the paper).

CBO can be calculated in the CP1 and the CP2. CBO
is to count the number of coupling between the target
class and other classes. Since CBO at CP1 only counts
the number of coupling between the target class and the
classes developed from scratch, the value of CBO is not
calculated in the way of original definition. However,
our previous research result showed that CBO at CP1
have highly correlated with the fault-proneness[6]. So,
we introduce the following two metrics.

CBON(Coupling Between Object classes Newly-
developed)

CBON is the number of coupling between the tar-
get class and the classes developed from scratch.

CBOR(Coupling Between Object class Reused)

CBOR is the number of coupling between the target
class and the reused classes

From the definitions, CBO is the sum of CBON and
CBOR.

3 EMPIRICAL EVALUATION

Overview

The experimental project was performed at a computer
company for five days in August 1997. The main char-
acteristics of the project can be summarized as follows:

(1) The Developers were new employees of the com-
puter company and had just graduated from college

in March 1997.

(2) There are sixteen developer teams and each team
built a mail deliver system of an identical require-
ment. Each team consisted of four or five develop-
ers.

(3) The programs were implemented in C++ language.

(4) Each developer worked on the assigned PC (Per-
sonal Computer). All PCs were connected to the
PC server via intranet. The server collected the
source code files of the developers every one hour.

We collected complexity metrics and fault data from
each developer. Unfortunately, we could not collect the
design specification in this experiment. So, according
th eassumption that all informations of the design spec-
ification are included in the source code, we collected
the metrics values from source code by using a metrics
tool.

Analysis

Table 2: Fault Predict Precision at Checkpoint

| Checkpoint | CP1 | CP2 | CP3 | CP4 |
Correctness(%) 82 76 85 86
Completeness(%) 33 59 63 70
Error-based 46 75 71 83
Completeness(%)

Table 2 shows the estimation accuracy of the fault
proneness by mutivariate logistic regression analysis at
each checkpoint of (CP1)..(CP4). The correctness is the
percentage of classes correctly predicted as faulty(the
number of predicted faulty and actually faulty classes
/ the number of predicted faulty classes). The com-
pleteness is the percentage of faulty classes detected(the
number of predicted fault and actually faulty classes /
the number of actually faulty classes). The error-based
completeness is the percentage of faults found in classes
correctly predicted as faulty.

Completeness at CP1 is relatively low (33%). On the
other hand, correctness is high(82%). Thus, the estima-
tion can be used to “seed” the classes in which faults
would be introduced. The seeded classes become the

candidates that should be reviewed and tested selec-
tively. Also, the location of the seeded classes might be
the criterion of the judgment for review. For example,
if the seeded classes are concentrated on the important
section of the design specification and the section is dif-
ficult to test, we should redesign it.

For completeness, estimation at CP2 is excellent with
respect to the upper limit at CP4. Though the metrics
for algorithms of the method cannot be used at CP2, the
result is a surprising one. It suggests that it would be
possible to estimate the fault-proneness from the design
specification in the design phase where the algorithms
are not determined, without source code.

The result of estimation at CP3 fell short of our expec-
tations. Compared to the estimation result at CP2, the
accuracy is not improved very much. We consider that
the accuracy would be improved by using ‘fine-grained’
C++ design metrics[2] together at CP3. Chidamber
also mentioned that the calculation of WMC depends
on the implementation of the target method. In this
experiment, according to the [1] and [3], we assumed
that the complexity of the method is unity. It would
improve the accuracy at CP3 that the WMC weighted
with traditional metrics (such as Cyclomatic Number|[8§]
or Software Science[5]).

4 CONCLUSION

In this paper, we proposed a new method to estimate the
fault-proneness of the class in the early design phase, us-
ing several complexity metrics for object-oriented soft-
ware. In the method, we have introduced four check-
points into the analysis/ design/ implementation phase,
in which particular subsets of metrics are applicable.
We have also applied the proposed method to an exper-
imental project. The analysis result shows the validity
and usefulness of the proposed method.

ACKNOWLEDGEMENTS

We would like to thank the support of Mr. Yukio Mohri
and Masahiro Takahashi of Nihon Unisys corporation
for the experimental projects in Section 3. We also
thank Mr. Shuji Takabayashi of Nara Institute of Sci-
ence and Technology for his assistance in building a met-
rics tool.

REFERENCES

[1] V. R. Basili, L. C. Briand, and W. L. Melo:
“A validation of object-oriented design metrics
as quality indicators”, IEEE Trans. on Software
Eng. Vol. 20, No. 22, pp. 751-761 (1996).

[2] L. C. Briand, P. Devanbu, and W. Melo: “An
Investigation into Coupling Measures for C++”,
Proc. of thel9th Int’l Conference on Software
Eng., Boston, USA, pp.412-421(1997).

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. R. Chidamber and C. F. Kemerer:“A metrics
suite for object-oriented design,” IEEE Trans-

actions on Software Engineering, Vol.20, No.6,
pp.476-493(1994).

J. S. Collofello and S. N. Woodfield: “Evaluat-
ing the effectiveness of reliability-assurance tech-

niques,” Journal of Systems & Software, Vol.9,
No.3, pp.191-195 (1989).

M. H. Halstead: FElement of software science,
New York, Elsevier North-Holland(1977).

T. Kamiya, S. Kusumoto, K. Inoue, and Y Mohri:
“Empirical Evaluation of Reuse Sensitiveness of
Complexity Metrics”, Information and Software
Technology, (Accepted).

M. Lorenz and J. Kidd: Object-Oriented software
metrics, New Jersey, Prentice Hall(1994).

T. J. McCabe: “A complexity measure,” IEEFE
transactions on software engineering, Vol.SE-2,
No.4, pp-308-320(1976).

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen: Object Oriented Modeling and
Design, Prentice Hall(1991).

