
A Generalized Model for Visualizing
Library Popularity, Adoption, and Diffusion

within a Software Ecosystem
Raula Gaikovina Kula∗, Coen De Roover†, Daniel M. German‡, Takashi Ishio∗, and Katsuro Inoue§

∗Nara Institute of Science and Technology, Japan
†Vrije Universiteit Brussel, Belgium
‡University of Victoria, Canada
§Osaka University, Japan

{raula-k,ishio}@is.naist.jp, cderoove@vub.ac.be, dmg@uvic.ca, inoue@ist.osaka-u.ac.jp

Abstract—The popularity of super repositories such as Maven
Central and the CRAN is a testament to software reuse activities
in both open-source and commercial projects alike. However, sev-
eral studies have highlighted the risks and dangers brought about
by application developers keeping dependencies on outdated
library versions. Intelligent mining of super repositories could
reveal hidden trends within the corresponding software ecosystem
and thereby provide valuable insights for such dependency-
related decisions. In this paper, we propose the Software Universe
Graph (SUG) Model as a structured abstraction of the evolution
of software systems and their library dependencies over time.
To demonstrate the SUG’s usefulness, we conduct an empiri-
cal study using 6,374 Maven artifacts and over 6,509 CRAN
packages mined from their real-world ecosystems. Visualizations
of the SUG model such as ‘library coexistence pairings’ and
‘dependents diffusion’ uncover popularity, adoption and diffusion
patterns within each software ecosystem. Results show the Maven
ecosystem as having a more conservative approach to dependency
updating than the CRAN ecosystem.

I. INTRODUCTION

Reusing software by depending on libraries is now common-
place in both open source and commercial settings alike [1],
[2]. Software libraries come with the promise of being able to
reuse quality implementations, thus preventing ‘reinventions
of the wheel’ and speeding up development. Examples of
popular reuse libraries are the SPRING [3] web framework
and the APACHE COMMONS [4] collection of utility functions.
Contributing to the popularity of these and other libraries has
certainly been the ease through which they can be accessed
nowadays from ecosystems formed by a collection of super
repositories such as Maven Central [5], R’s CRAN [6],
Sourceforge [7] and GitHub [8].

With new libraries and newer versions of existing libraries
continuously being released, managing a system’s library
dependencies is a concern on its own. Improper depen-
dency management can be fatal to any software project [9].
As outlined in related studies [10], [11], [12], dependency
management includes making cost-benefit decisions related
to keeping or updating dependencies on outdated libraries.
Additionally, a recent study [13] reported that 87.5% of
developers do not update their dependencies, a result that

complements other studies that show updating library APIs
is slow and lagging [14], [15], [16], [17]. This study found
that such update decisions are not only influenced by whether
or not security vulnerabilities have been patched and important
features have been improved, but also by the amount of work
required to accommodate changes in the API of a newer library
version. Recently, there also has been other work that studies
dependency issues at the ecosystem level [18], [19], [20].

Meta-data recorded within these ecosystems can provide
system maintainers valuable “wisdom-of-the-crowd” insights
into these dependency-related questions. We introduce the
Software Universe Graph (SUG) as a means to model the
realities of popularity, adoption and diffusion within a software
ecosystem. Popularity refers to the usage of a library over
time. Adoption refers to systems introducing a new library
dependency. Diffusion, inspired by use-diffusion [21], is a
measure of the spread of library versions over dependent
systems. The abstract nature of our SUG enables generalizing
and hence comparing these aspects across different types of
super repositories.

To evaluate the SUG model, we report on a large-scale
empirical study in which we construct SUGs for a large
collection of Maven and CRAN super repositories. Our goal is
to: (1) construct real-world SUG models to show its practical
application and (2) demonstrate its usefulness in library de-
pendency management through several case studies. Our key
contributions are:
• We introduce the fully formalized SUG model for rep-

resenting super repositories in a generic manner, which
lends itself to being mined for insights about popularity,
adoption and diffusion.

• We define several metrics related to popularity, adoption
and diffusion —all in terms of formal operations on
a SUG model. We also introduce several SUG-based
visualizations.

• In a large-scale study, we build SUG models for the
very different realities of the Maven and of the CRAN
super repositories. We demonstrate that our visualiza-
tions intuitively provide valuable insights for dependency

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

288

management. The study results empirically depict Maven
users as reluctant to update to newer library releases,
with older library releases deemed ‘usable’ by the crowd.
CRAN users are more disciplined in this regard.

II. BACKGROUND

Studying library usage in terms of absolute popularity is
not a new concept. Holmes et al. appeal to popularity as the
main indicator to identify libraries of interest [22]. Eisenberg
et al. improve navigation through a library’s structure using
the popularity of its elements to scale their depiction [23].
De Roover et al. explored library popularity in terms of
source-level usage patterns [24]. Popularity over time has
received less attention. Mileva et al. study popularity over
time to identify the most commonly used library versions [25].
Follow-up work applies the theory of diffusion to identify
and predict version usage trends [26]. Similar to our diffusion
work, Bloemen et al. [27] explored the diffusion of Gentoo
packages. Using the economic bass model, they modeled
the diffusion of gentoo packages over time. Teyton et al.
use ‘library migration graphs’ to identify candidate library
migrations [11].

Instead of a single-dimensional analysis of popular library
usage, we present an extensively formalized SUG model with
popularity and variety metrics and additional complementary
diffusion and coexistence plot visualizations. This provides for
a much richer understanding of significant phenomena in the
evolution of library dependencies.

III. SOFTWARE UNIVERSE MODELING

This paper is concerned with intelligent mining of a large
collection of software repositories within an ecosystem, de-
fined as super repositories. More specifically, we present an
abstract model to understand and compare adoption, diffusion
and popularity within its particular universe. We conjecture
that useful information such as popularity is indicative of
a library reliability, which is measured by significant usage
within the ecosystem.

A. Software Universe Graph

We present the Software Universe Graph (SUG) as a struc-
tural abstraction of a super repository. Figure 1 will serve as
an illustration of the different relationships within the graph.
Let G = (N,E) for a graph G. N is a set of nodes, with
each node representing a software unit. We consider both
any system version, such as SymmetricDs version 3.6.3
(SymmetricDs3.6.3) or a library version Junit version
4.11 (Junit4.11) as software unit nodes. For any SUG, the
edges E are composed of Euse and Eupdate. Euse is a set of
use-relations and Eupdate is a set of update-relations. We first
present Euse in Definition 1 and 2. Eupdate is then introduced
in Definition 3.

Definition 1: An edge u→ v ∈ Euse means that u uses v.
The defined functions of Euse are:

Use(u) ≡ {v|u→ v} (1)

UsedBy(u) ≡ {v|v → u} (2)

Use-relations can be extracted from either the source code
or configuration files. As depicted in Figure 1, node a1 uses
node x1. Also node x1 is used by nodes a1, q1 and q2. Parallel
edges for node pairs are not allowed. In this paper, we focus on
popular software units that are connected by many use-relation
edges.

Definition 2: For a given node u, popularity is the number
of incoming use-relation edges and is defined as:

popularity(u) ≡ |UsedBy(u)| (3)

For instance in Figure 1, for node x1, popularity(x1) =
|UsedBy(x1)| = |{a1, q1, q2}| = 3. As an extension, the
popularity of any pair of nodes (u and v) is defined by the
number of common nodes connected by an incoming edge.
Formally,

popularity(u, v) ≡ |UsedBy(u) ∩ UsedBy(v)| (4)

We define u and v as being coexistence pairs
if popularity(u, v) ≥ 1. Take from Figure 1,
popularity(x1, a1) = |{UsedBy(x1) ∩ UsedBy(a1)}| =
|{a1, q1, q2} ∩ {q1}| = |{q1}| = 1. Therefore in the Figure,
x1 and q1 are coexistence pairs.

Definition 3: We represent an update-relation from node
a to b using a ⇒ b, meaning that newer update b had been
released from node a and is defined as:

a⇒ b ∈ Eupdate (5)

Update-relations refers to when a succeeding release of a
software unit is made available. Figure 1 shows that node
q1 is first updated to node q2. Later on, node q2 is updated
to the latest node q3. Hence, q1 ⇒ q2 ⇒ q3. We find that
every node in the SUG should be denoted by three attributes:
<name,release,time>. For a node u, we then define:
• u.name Name is the string representation identifier of a

software unit. We introduce the name axiom: For nodes
u and v, if u⇒ v, then u.name = v.name holds.

• u.release. Release refers the specific assigned change
reference for a software unit. For nodes u and v, if u⇒ v
then v is the immediate successor of u. Note that the
versioning pattern may vary from project to project.

• u.time. Time refers to the time-stamp at which node u
was released. For nodes u and v of u ⇒ v, u.time <
v.time.

An example of the attributes can be shown with the JU-
NIT library. These attributes belong to the most recent re-
lease1 (i.e., <name = "junit", version= "4.11",
time="2012-11-14">). We define a set of nodes weakly
connected by update-relations as a lineage. We are interested
in all releases within a lineage.

Definition 4: Lineage of a related set of nodes is determined
through transitive update-relations. This is defined as:

1http://mvnrepository.com/artifact/junit/junit/4.11: accessed 2017-04-01

289

𝑈𝑠𝑒 𝑎1 = 𝑥1

𝑈𝑠𝑒𝑑𝐵𝑦 𝑥1 = 𝑎1, 𝑞1, 𝑞2

𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞1
= 𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞2 = 𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞3
= 𝑞1, 𝑞2, 𝑞3

𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑥
= 𝑈𝑠𝑒𝑑𝑏𝑦(𝑥) = |𝑎1, 𝑞1, 𝑞2 |
= |{𝐿𝑖𝑛𝑒𝑎𝑔𝑒(a),𝐿𝑖𝑛𝑒𝑎𝑔𝑒(q1),𝐿𝑖𝑛𝑒𝑎𝑔𝑒(q2)}|
= 2

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑥1
= 𝑈𝑠𝑒𝑑𝐵𝑦 𝑥1 = 𝑎1, 𝑞1, 𝑞2
= 3

q1 q2 q3

a2a1

x2 x3x1

update

use

Lineage

Fig. 1. A Conceptual Example of the Software Universe Graph with formalized definitions and notations.

Lineage(u) ≡ {v|v +⇒ u ∨ u
+⇒ v ∨ u = v} (6)

where a
+⇒ b is the transitive closure on any update-relation

a⇒ b.
The name axiom proves that all names in a lineage are the
same. A lineage of nodes is depicted in Figure 1, where
Lineage(q1) = Lineage(q2) = Lineage(q3) = {q1, q2, q3}.
The lineage function enables more dynamic operations. To
differentiate between lineages, we now introduce an additional
operator.

Definition 5: We use the ‖ S ‖ operator to represent the
number of different lineage in a set of nodes in S.

‖ S ‖≡ |{Lineage(u)|u ∈ S}| (7)

Looking back at the example in Figure 1,
suppose S = {a1, a2, x1}. Hence, ‖ S ‖=
|{Lineage(a1), Lineage(a2), Lineage(x1)}| =
|{{a1, a2}, {x1}}| = 2. Complex queries on our SUG
model based on lineages are now possible. The previously
defined popularity function alone is insufficient in reflecting
the spread or diffusion of a software unit across the software
universe. We introduce a variety function that allows us to
measure diffusion.

Definition 6: Variety represents the number of different
lineages that use a software unit.

variety(u) ≡‖ UsedBy(u) ‖ (8)

In Figure 1 we observe that node x1 is used by node
related to Lineage(a1) and Lineage(q1). Hence, variety is
2. Formally, variety(x1) =‖ {a1, q1, q2} ‖
= |{Lineage(a1), Lineage(q1), Lineage(q2)}| = 2.

Definition 7: The SUG has temporal properties. This de-
scribes the simultaneity or ordering in reference to time. Let
SUG G = (N,E) be at time t. At time t′ > t, we observe an
extension of G, such that:

G′ = (N ∪∆N,E ∪∆E) (9)

where ∆E ∩ (N ×N) = ∅.

a1 a3

x2

(∆𝐸)

𝐺 = (𝑁, 𝐸)

𝐺′ = (𝑁 ∪ ∆𝑁, 𝐸 ∪ ∆𝐸)

x1

(∆𝑁)

a2
(∆𝐸)

Fig. 2. Temporal property of the SUG

Figure 2 illustrates the temporal properties of the SUG.
Here, it is observed that G′ is composed of G augmented
with newly added node a3 and its corresponding a3 → x2
and a2 ⇒ a3 relations. A SUG grows monotonically over
time with only additions. Here we consider that modification
or deletion changes on the SUG do not occur.

Definition 8: A timed SUG specifies the state of the SUG
at any point in time. So for a SUG G = (N,E), we represent
a timed SUG Gt at time t as a sub-graph of G. Formally,

Gt ≡ (Nt, Et) (10)

where Nt = {u|u ∈ N, u.time ≤ t} and Et = {e|e ∈ E∧e ∈
Nt}.

We are now able to describe the temporal properties of
popularity. We introduce Popularityt(u) for a node u at time
t. This provides the popularity of u for Gt

2.

B. Query Operations on the SUG Model

We utilize the SUG model to query and retrieve useful
information from the software ecosystem. We now introduce
Coexistence Pairing and Diffusion Plots as examples of the
visualization of popularity. Our rational is that popular usage
of a software unit is evident by successful adoption and diffu-
sion over its predecessors. It is important to note that results do
not indicate concrete evidence of library compatibility, instead

2We define that Popularityt(u) = 0 if t < u.time

290

d1 d2

a1 a2

b1

a

b

d
e

c

a). SUG G b). L-SUG G` c). Popularity(a,b) of G`

a

b

d
e

b2

a3

c1 c2

e1 e2

d3

Fig. 3. Illustrative example of the coexistence pairing. Let Figure 3(a). shows
a typical SUG G with respective lineages annotated. Figure 3(b) is the L-
SUG G′. Finally in Figure 3(c), the popularity is determined. In this case the
coexistence popularity(a,b) is 2.

popularity suggests some recommended usages based on the
‘wisdom of the crowd’.

Coexistence pairing examine and explores occurrences of
specific combinations between software components. We em-
pirically visualize these coexistence pairs, deemed to be
compatible by the ‘crowd’. The coexistence popularity of
two nodes (i.e., popularity(u, v)) is used to establish a
pairing between the nodes. Alternatively, non coexistence pairs
(i.e., popularity(u, v) = 0) suggest combinations that are
possible but not seen yet. To aggregate nodes by lineage, we
introduce a reduced SUG called Lineage SUG (L-SUG).

Definition 9: A Lineage SUG is used to merge all related
nodes into a single node. We define a Lineage SUG (L-SUG)
G′ = (N ′, E′) of an SUG G =
(N,E = Euse ∪ Eupdate) where:

N ′ = {Lineage(u)|u ∈ N} (11)

and

E′ = {Lineage(u)→ Lineage(v)|u, v ∈ N ∧ u→ v ∈ Euse}
(12)

In the L-SUG, all nodes belonging to the same lineage are
merged with all use-relations mapped onto the merged node.
All update-relations are discarded. Almost all defined func-
tions for the SUG like popularity, should theoretically apply
on the L-SUG3. An example of the L-SUG is explained in
Figure 3. Figure 3(a) shows a typical SUG G with respective
lineages annotated. Figure 3(b) depicts the lineage SUG G′.
In Figure 3(c), the L-SUG popularity of L-SUG nodes a and
b is calculated. We now introduce the three different types of
coexistence pairing operations as follows:

1) L-SUG Lineage Pairs. We use the popularity of two
L-SUG nodes. Further exploration of the lineage pairs
would lead to release pairs of these lineages.

2) SUG Release Pairs. Once interested lineage pairs are
identified, maintainers next decide on popular release
combinations. To this end, we use popularity of two
nodes on the SUG to establish coexistence release pairs.

3) L-SUG Lineage Coexistence Rank. The coexistence
rank returns popularity pairs relative to a specific L-SUG

3An exception would be L-SUG variety, which is a lineage within an
lineage. We consider this to be out of scope for this study.

qr

s

b

a

y
z

x

node operation coexistent rank
for node a

s popularity (a,s) 2

r popularity (a,r) 1

y popularity (a,y) 1

z popularity (a,z) 1

b popularity (a,b) 1

L-SUG

Fig. 4. Example of the coexistence operation. For the L-SUG P ′, for a node
a, the coexistence rank allows to determine popularity in relation to node a.
In this example node s has the highest coexistence rank.

node. Formally, for a node u on a set of L-SUG U ′,
we compute all values of popularity(u, v) for v ∈ U ′
where popularity(u, v) ≥ 1. We refer to them as the
coexistence rank. For example in Figure 4, consider L-
SUG node a. The coexistence rank returns 5 results, with
node s having the highest coexistence rank of 2. Later in
Section IV-C, we demonstrate how the coexistence rank
may uncover intuitive insights.

As an extension on our work of Library Dependency Plots
(LDP) [28], we introduce Diffusion Plots. For any software
unit, DPs enable plotting and tracking both popularity and
variety at any given point in time t such that popularityt(u)
and varietyt(u) for a node u. The DPs provide a temporal
means to evaluate popularity and the adoptive behavior of a
software unit within its universe. We introduce the two main
attributes of the DP:
• Popularity and Variety Plots. DPs plot both the
popularityt and corresponding varietyt on a SUG. We
use the plots to understand the adoption and diffusion at
both the lineage and release level.

• Diffusion Curve Types. The DPs allow us to perceive
patterns of popularity for a specific release belonging to
a lineage. Additionally, the DPs provide insights on the
adoption and diffusion within that universe.

In Figure 5, we show an example DP of the MOCKITO-
CORE lineage from the Maven super repository. For illustration
purposes –and to simplify the curve– this DP only shows
two releases. Note the crossing of lines, which is described
as the superseding point where MOCKITO-CORE1.8.5 succeeds
MOCKITO-CORE1.8.4 in both popularityt and varietyt. Sec-
tion IV-D details the DP visualizations.

IV. EMPIRICAL STUDY

A. Case Study of Maven and CRAN Ecosystems

Our aim of the empirical study is to demonstrate: (1) prac-
tical application of our formalized SUG model when applied
to real-world data and (2) usefulness by providing insights
and comparisons between two different ecosystems. In detail,
we demonstrate how our model operations and visualizations
support describing real-world data. All tools, scripts, data and
results are freely available on request.

291

0

10

20

30

2010-07 2011-01 2011-07 2012-01 2012-07 2013-01
 time t

po
pu

la
rit

y t

popularityt

5

10

2010-07 2011-01 2011-07 2012-01 2012-07 2013-01
 time t

va
rie

ty
t Lineage Releases

1.8.4

1.8.5

varietyt

superseding
point

Fig. 5. A simple example of the diffusion plot for the Maven MOCKITO-CORE lineage release 1.8.4 and 1.8.5

TABLE I
CONSTRUCTION OF THE SUG USING ATTRIBUTES STORED FOR MAVEN

JAR BINARIES AND CRAN ZIP WINDOWS PACKAGES.

Maven CRAN
File type POM.xml DESCRIPTION
Euse <dependency> Depends:
Eupdate <version> Version:
x.name <groupId>.<artifactId> Package:
x.release <version> Version:
x.time time-stamp of jar binary indicated build time

To demonstrate the practicality of the SUG, we construct
and apply the SUG model and its operations to a large collec-
tion of Maven Central [5] and CRAN [6] super repositories.
We then perform model operations on both the Maven and
CRAN SUGs to demonstrate the usefulness of our models.
By selecting different examples, we show different insights
on adoption, diffusion and popularity within each universe.
The Maven Central super repository is a major super repos-
itory that hosts many JVM project artefacts from the Java
programming language ecosystem. Note that most projects in
this repository are open-source Java, Scala or Clojure libraries
(referred to as artefacts). R [29] is a free software environment
for statistical computing and graphics. The Comprehensive
R Archive Network (CRAN) belongs to an R ecosystem
that hosts sources, binaries and packages related to the R
environment. For the experiment, we only targeted contributed
packages under windows4 (from R version 1.7 to 3.1).

B. SUG Construction and Analysis

Table I shows the different attributes collected from meta-
files, that we used to construct the SUGs. We constructed each
SUG by extracting (i) use-relations, (ii) update-relations and
(iii) software attributes such as the name, release and time
properties of each software in the ecosystem. Specifically,
we employed a typical extraction method of dependency
information using meta-files [11], [30], [31], [32]. For the
Maven libraries, we use the Project Object Model file (i.e.,
POM.xml) that describes the project’s configuration meta-
data —including its compile-time dependencies5, while each

4http://cran.r-project.org/bin/windows/contrib/
5Refer to http://maven.apache.org/pom.html for the data structure

TABLE II
SUG STATISTICS FOR MAVEN LIBRARIES AND CRAN PACKAGES

Maven CRAN
Time Period 2005-11-03 to 2013-11-24 2003-08-29 to 2014-08-22
of nodes 188,951 93,184
of lineages 6,374 6,506
Reuse 5,146 1,517

TABLE III
SUMMARY STATISTICS FOR L-SUG POPULARITY

Maven CRAN
Min 1 1
1st Quartile 2 4
Median 6 8
Mean 38.8 64.62
3rd Quartile 20 22
Max 10160 26460

CRAN package stores its dependency information in a file
called ‘DESCRIPTION’6.

Table II presents a summary of data mined for the experi-
ment. For our SUGs, our tools were able to mine and generate
188,951 Maven and 93,184 CRAN nodes from each super
repository, spanning across 9-11 years. Note that independent
software units (i.e.,without use-relation edges) were not in-
cluded in SUGs. For the CRAN universe, we also include both
available and archived packages.7. The SUGs were built from
the dates shown in Table II. To understand the reuse within
each universe, we measure how many lineages are being used
internally. For every node u in SUG U :

reuse =‖
⋃
u∈U

UsedBy(u) ‖ (13)

Table II details each SUG. The results suggest that the
CRAN universe reuse is comprised of a much smaller subset
of reuse libraries (i.e., 1,518 lineages). In contrast, for Maven
there is an indication of more reuse within the universe
(i.e., 5,146 lineages are used by 6,374 other lineages). We find
this result not so surprising as most Maven artifacts comprise
of either libraries or frameworks that may depend on multiple
libraries.

6https://goo.gl/H1S1vJ
7http://cran.r-project.org/web/packages/ reports 5,833 at time of experiment

292

To determine popularity of a lineage, we apply the popular-
ity function on a L-SUG. Hence, from the Maven and CRAN
SUGs, we derive their respective L-SUGs with a lineage by
lineage use relation. The statistical summary of this L-SUG
popularity distribution for both Maven and CRAN is presented
in Table III. Surprisingly, we observe that except for the
median and the 3rd quartile, both distributions of the Maven
and CRAN universes seem similar. We had expected that
since CRAN exhibited lower reuse (shown in Table II), it
would be more likely to generate higher popularity counts.
For Maven, the testing library JUNIT was the most popular,
while dependency on the R package release was found to be
the most popular in CRAN packages.

C. Coexistence Pairs using Heat Maps

We utilize a heat map matrix to visualize coexistence pairs.
We define the intensity as a normalized frequency count of
popular pairs. For a given set of nodes I , for pairs x, y ∈ I
intensity is:

intensity(x, y, I) =
popularity(x, y)

max
i,j∈I
i 6=j

(popularity(i, j))
(14)

where x, y ∈ I and max returns the most frequent counts
of pairing. The Intensity function allows for normalized
intensity shading of tiles from a scale of 0 to 1 (darker
indicates higher popularity) by returning the most frequent
pair count.

Using the L-SUG popularity, we utilize the heat map and the
intensity function to plot popular pair frequency counts. Figure
6 illustrates examples of these lineage pairings. Figure 6(a)
depicts the pairing of eight selected Maven Apache Commons
[4] artifacts built for Java. From the matrix, it is observed that
the most popular pairing is between COMMONS-LOGGING,
a log helper and COMMONS-COLLECTIONS, a library used
for handling data structures. In Figure 6(b), we observe two
cases of non-coexistence. Figure 6(b) shows the top 10 most
popular dependent packages8 in CRAN. Notice that pairs
(TCLTK, MATRIX) and (TCLTK, MVTNORM) lack coexistence.
We speculate but cannot confirm that common functionality of
handling complex matrices manipulation and GUI could be a
reason. The pairing of (GRAPHICS,STATS) as the most frequent
package combination is typical. This is because it is known as
the ‘free software environment for statistical computing and
graphics’ [29]. In summary, the results provide at a glance
hints of popular pairings at the lineage level.

From the lineage pairing (L-SUG), popularity on the SUG is
used to determine release pairs between two lineages. A heat
map matrix with the intensity is used for this visualization.
Figures 7(a), 7(b), 7(c) and 7(d) depict the release pair plots
between Maven’s ASM [33], COMMONS-IO [34], COMMONS-
LOGGING [35] and COMMONS-LANG [36]. Figures 7(e) and
7(f) show release pair plots between CRAN’s MASS [37],
MVTNORM [38] and LATTICE. Different to the L-SUG lin-
eage pairs, the popularity is annotated at each pairing point.

8excluding the R dependency

(a) Lineage pairings of eight Apache commons arti-
facts

(b) Top 10 popular CRAN package
dependents (excluding R). Notice that
pairs TCLTK, MATRIX and TCLTK,
MVTNORM lack coexistence.

Fig. 6. Example of Coexistence Lineage Pairing

Additionally, the release pair plots include the popularity of
a specific version x and any other software unit ‘outside’
Lineage(y). It is plotted at the end of the x and y axis of
the release pair plot. Formally, for each node n in U :

outside(x, y) =
∑
n∈U

Lineage(n)6=Lineage(x)
Lineage(n)6=Lineage(y)

popularity(x, n) (15)

The outside pairs gauge relative popularity of alternative
combinations. For instance, in Figure 7(b), the popularity of
pairing Maven COMMONS-IO1.4 and ASM3.2 (popularity of
579) is greater than both ‘outside’ COMMONS-IO1.4 (popu-
larity of 210) and ASM3.2 (popularity of 75). This classifies

293

(a) ASM vs. COMMONS-LOGGING. (b) ASM vs. COMMONS-IO. (c) COMMONS-LANG vs. COMMONS-
LOGGING.

(d) COMMONS-LANG vs. COMMONS-
IO.

(e) MASS vs. MVTNORM (f) LATTICE vs. MVTNORM

Fig. 7. Example of Coexistence Mapping for both Maven Artifacts (a,b,c,d) and CRAN Packages (e,f). Note the different co-evolving patterns.

Lineage B

Li
n

ea
ge

 A

LATEST

LA
TE

ST

O
LD

ES
T

Older
releases of
Lineage A

Older
releases of
Lineage B

Latest release of both
lineages

Fig. 8. Conceptual example of release pairs patterns, provide hints of popular
pairings with older releases or if co-evolution (diagonal pattern) occurs.

this pairing as very popular. On the other hand in Figure
7(e), CRAN’s MASS7.3−7 and MVTNORM0.9.96 (popularity of
15) lower than the ‘outside’ MASS7.3−7 (popularity of 411)
indicate that the (MASS, MVTNORM) pair combination is not
the most popular possible pairing combination.

Co-evolution patterns assist with interpretation of the evo-
lution between the two lineages. As depicted in Figure 8, co-
evolving patterns such as the diagonal co-evolving pattern can
be identified from the heat map matrix. As shown in Figure 8,
pairings with older releases can be easily distinguished. Fig-
ure 7(a) highlights COMMONS-LOGGING1.0.3 and COMMONS-
LOGGING1.1.1 as popular pairings for ASM releases, forming
an almost vertical pattern. While in Figure 7(b), there seems to
be no apparent co-evolving pattern, with the ‘crowd’ settling
on the ASM3.2 and COMMONS-IO1.4 pairing. Patterns from
Figure 7(c) indicate that older releases of COMMONS-LANG
have popular pairings with even newer COMMONS-LOGGING
releases. Figure 7(d) displays a more diagonal co-evolving
pattern between COMMONS-LANG and COMMONS-IO.

Back to Figures 7(a), 7(b), 7(c) and 7(d) the intensity
indicates that the most popular Maven ‘crowd choices’ are
not necessarily the latest releases of their respective lineages.
Maven maintainers seem conservative with older versions.
Quite in contrast to the Maven pairings, CRAN packages
depict a more distinguished diagonal pattern of co-evolution.
This is illustrated in Figures 7(e) and 7(f). There are some
inconsistencies such as non-coexistence and overlapping pairs.
Take for instance, the (MASS7.3−7, MVTNORM0.9−92) and (
MASS7.3−7, MVTNORM0.9−96) pairings. This is due to the
same version (MASS7.3−7) being released over two consec-
utive R releases. Also different to Maven, the most popular
‘crowd choices’ are the latest releases of their respective
lineage. We conjecture that regular updates by maintainers to
comply with the latest R release build check 9 may contribute
to why CRAN packages are so well maintained. Also as
outlined by Mens [39], since only a single version is allowed
per release of R, maintainers must update to the compatible
version or risk their package being removed in the next release.
Regular updates for R packages may account for why the most
popular releases are the most frequent release pairs.

Finally from the Maven super repository, we provide an
example of an L-SUG coexistence rank. We perform the
coexist function on an L-SUG of Maven, thus allowing
a lineage as a node input. The operation returns lineages
that at some point in time had a coexistence pairing. The
Maven lineage artefact COMMONS-DBCP, a relational database
connector [40] was used as an illustrative example. Using the
Maven L-SUG, the coexistence rank returned 513 results.
Table IV pertains to the top 10 results. Note that the list
comprises of many non-database, general-purpose libraries
such as JUNIT and LOG4J. For a more useful result, the use of

9the latest build is accessible at http://cran.rstudio.com/

294

TABLE IV
TOP 10 FILTERED FREQUENT COUNTS OF coexistence rank FOR

LINEAGE COMMONS-DBCP

lineage coexistence rank
junit 37
commons-collections 28
log4j 28
commons-pool 27
commons-logging 25
hsqldb 20
commons-lang 15
derby 14
servlet-api 13
spring 13

TABLE V
TOP 10 FREQUENT COUNTS OF coexistence rank FOR

LINEAGE COMMONS-DBCP EXCLUDING POPULAR LINEAGES.

lineage coexistence rank
mysql-connector-java 11
postgresql 10
c3p0 8
spring-test 7
cglib 6
aspectjweaver 4
bsh 4
geronimo-spec-jms 4
proxool 4
spring-web 4

L-SUG popularity thresholds (shown in Table III) can be used
to remove the more general purpose lineages, creating a more
domain-specific result. We removed lineages that were above
the 3rd quartile popularity threshold. The filtered results are
provided in Table V.

Compared to Table IV, the results in Table V provide
more database-specific entries such as MYSQL-CONNECTOR-
JAVA10, POSTGRELSQL11, C3P012 and PROXOOL13. The fil-
tered results are not entirely database-specific such asSPRING-
WEB14. As an extension, we can further explore lineage pair-
ing of the domain-specific results in Table V. Figure 9
depicts this result. Popular pairings of both POSTGRESL
and MYSQL-CONNECTOR-JAVA suggest that in regards to
COMMONS-DBCP, the postgresql and mysql databases are
popular among the Maven ‘crowd’. The non-coexistence of
MYSQL-CONNECTOR-JAVA and ASPECTJWEAVER15 suggests
that maintainers who depend on the ASPECTJWEAVER library
should pay special attention to ‘the wisdom of the crowd’, as
for one reason or another the crowd avoids its coexistence with
the MYSQL-CONNECTOR-JAVA library. Additional operations
of filtering and heat map lineage pairing are examples of how
users can use any combination of SUG operations.

10MYSQL-CONNECTOR-JAVA is a MySQL database java connector
11POSTGRELSQL is a PostgreSQL Driver JDBC4
12C3P0 is a JDBC Connection pooling / Statement caching library
13PROXOOL is a Java connection pool.
14SPRING-WEB is the web component of the spring framework
15ASPECTJWEAVER AspectJ weaver introduces aspect-oriented advices

Fig. 9. Top COMMONS-DBCP filtered coexistence ranked lineage pairs

D. Diffusion Plots

A key element lacking in the coexistence pairing visu-
alizations are the SUG temporal properties. Diffusion Plots
(DPs) are used to this end, so that adoption and diffusion of
a lineage is seen at any point in time. For any lineage, we
describe both popularityt and varietyt. For popularity, we
plot the number of software units using a particular release
of the lineage. Conversely in the variety plot, we track the
number of lineages that use a specific release. Popularity is
characterized as a curve that depicts important visual features,
such as the steepness, when the curve halts and when the
curve is superseded by a successive release curve. Figure 10
provides examples of DPs for both Maven and CRAN.

Figures 10(a) and 10(b) depict DPs for two lineages within
the Maven Repository. COMMONS-LANG is a helper utility
library, notably assisting with Java string manipulation meth-
ods, basic numerical methods, object reflection, concurrency,
creation and serialization. COMMONS-LOGGING is a java
logger helper library. As seen in Figure 10(a), COMMONS-
LANG2.4 (dark green) it is overall the most popular although
older release. It is deemed as ‘stable’ by the ‘crowd’. The
steepness of the curve can be interpreted as the adoption trend.
For instance in the varietyt plot of Figure 10(b), we observe
that COMMONS-LOGGING1.0.4 has the most variety at any
point in time. However, closely looking at its curve (light
green), popularity has probably peaked with the curve being
almost horizontal. COMMONS-LOGGING1.1.1 (pink), however,
adopts a more diagonal curve, hinting future adoptions could
follow this trend. Note that the predecessor COMMONS-
LANG2.4 (dark green) in Figure 10(a) is still adopted beyond
the COMMONS-LANG2.3 obsolete point, making it more suc-
cessful. Significant difference between popularityt and the
corresponding varietyt reveals lineages with abnormally high
releases depending on this specific lineage release. For in-
stance, in Figure 10(a), on the y-axis depicts popularityt >
150 while varietyt > 40. Such variances could be misleading,
so care should be taken in its interpretation.

The DPs of the CRAN universe exhibit a very different
adoption and diffusion behavior. Figures 10(c) and 10(d)
show the DPs of both MASS and MVTNORM lineages. The

295

0

50

100

150

2006 2008 2010 2012 2014
 time t

popularityt

0

20

40

2006 2008 2010 2012 2014
 time t

Lineage Releases

2.1

2.2

2.3

2.4

2.5

2.6

varietyt

(a) COMMONS-LANG

0

100

200

300

400

2006 2008 2010 2012 2014
 time t

popularityt

0

20

40

60

80

2006 2008 2010 2012 2014
 time t

Lineage Releases

1.0.2

1.0.3

1.0.4

1.1

1.1.1

varietyt

(b) COMMONS-LOGGINGS

0

100

200

300

400

2005 2006 2007 2008 2009 2010 2011
 time t

popularityt

0

100

200

300

400

2005 2006 2007 2008 2009 2010 2011
 time t

Lineage Releases

Version: 7.2-12

Version: 7.2-20

Version: 7.2-24

Version: 7.2-27.1

Version: 7.2-34

Version: 7.2-38

Version: 7.2-4

Version: 7.2-42

Version: 7.2-45

Version: 7.2-47

Version: 7.2-49

Version: 7.3-7

varietyt

(c) MASS

0

25

50

75

2005 2006 2007 2008 2009 2010 2011
 time t

popularityt

0

25

50

75

2005 2006 2007 2008 2009 2010 2011
 time t

Lineage Releases

Version: 0.7-1

Version: 0.7-2

Version: 0.7-5

Version: 0.8-1

Version: 0.9-0

Version: 0.9-2

Version: 0.9-7

Version: 0.9-9

Version: 0.9-92

Version: 0.9-96

varietyt

(d) MVTNORM

Fig. 10. Dependents Diffusion Plots for selected Maven and CRAN lineages. The left hand depicts the popularityt while the right shows the varietyt for
their respective releases.

Mass package supports functions and datasets for Venables
and Ripley’s MASS while the MVTNORM package computes
multivariate normal and t probabilities, quantiles, random
deviates and densities. These are depicted in Figure 10(c)
and 10(d), with regular superseding of the previous release.
Previous release curves never overlap but grow incrementally
over time. Note that the most popular library versions are
the latest releases. Differences in corresponding popularityt
and varietyt values are minimal. This is consistent with the
fact that only a single lineage release is permitted per R
release. The steepness of the rate of adoption is almost vertical,
meaning migration to newer releases is almost instantaneous,
while making previous releases obsolete. In Figure 10(c),
the Mass7.3−7 curve follows an abnormal regrowth type
shape possibly caused by migration to a newer R release. In
summary, DPs offer a visualization of adoption and diffusion
patterns for a lineage. This has shown to be particularly
useful in the case of the Maven universe, where adoption is
slow and older releases are still popular. Particularly, results
in Figure 10(a) coincide with Figure 7(c), where the older
releases of COMMONS-LANG are still preferred over newer
versions. Superseding points may provide hints on when it
is safe to update. Additionally as shown, care must be taken
when interpreting variance in popularityt and varietyt.

V. DISCUSSION

SUG Model Considerations. The SUG model enables a
standardized comparison of use-relations across diverse struc-
tured universes of software repositories within the ecosystem.
The model allows for uncovering adoption, diffusion and
popularity within a super repository universe, that is useful
for assessing dependency management issues for developers.
In this study, we only looked at two different ecosystems,
however, we would like to investigate more ecosystems such as
the ’C programming language’ libraries universe. As the rise of
cross-language (or platform) systems emerge, potential future

research avenues could be the adaptation from a different
universe and how system applications deal with cross-universe
interaction. The use of an abstract model has its drawbacks,
such as disregarding more complex concepts such as package
‘containment’ and ‘transitive’ relationships. At this stage we
only consider the basic elements of software usage to measure
popularity. As we study more systems, we will consider
modeling additional concepts common to all universes as
extensions to the model. A concern in the SUG construction
was the assignment of the Ruse and Rup edges in relation
to the name attribute of the node. Threats specific to the
Maven and CRAN repositories, such as changed domains
or lineage from more multiple nodes exist. Nevertheless,
conceptually the SUG model was successfully applied to each
universe. For future improvements of accuracy the model can
expand beyond the name attribute for lineage classifications.
We plan to incorporate more sophisticated techniques and tools
used in ‘code clone’ such as code clone detection [41], [42]
and ‘origin’ analysis [43], [44] to determine common lineage.
Recently, Ishio et al. presented a promising technique to find
software provenance using its Software Bertillonage [45].

There exist many definitions of software variability and
dependency relationships. In Software Product Line Engi-
neering (SPL), terms such as ‘product’ variability have been
used extensively [46], [47], [48]. In the code clones field,
Kim et al. [49] coined clone ‘genealogies’ to track variability
between software of similar origins. To coincide with the
abstract nature of the SUG and avoid preconceptions, we
decided on the term ‘lineage’ to describe variability between
software releases. In addition, systems and libraries are not
explicitly distinguished. Graph cyclic based approaches such
as page ranking, reference counting, and component ranking
are common for measuring popularity on graph based models
[11],[50]. Our SUG model does not employ any of these
approaches as it is designed to rely on the dependency chains

296

to measure immediate dependency characteristics directly.
Model Operations. As stated in our background, related

studies have all reported maintainer’s concerns with API
breakages and incompatibilities of existing dependencies over
time. The results of this study revealed that the coexistence
mapping provides interesting visual patterns. Assuming that
usage implies stability, we can identify combinations of lin-
eages deemed safe by the ‘crowd’. The coexistence operations
on the SUG demonstrate more ‘intuitive’ aspects of the
model, although domain-specific filtering may be required.
Another complex but useful operation that was not presented
in this paper is the tracing of systems that have abandoned a
dependency. This could be future work. The Diffusion Plots
(DPs) provide for a more temporal analysis of popularity and
diffusion. Consistent with the SUG temporal properties, the
restriction of adding nodes results in incremental adoption
curves. The accumulating growth provides for a comparison of
previous releases. Overall the DPs describe different adoption
behaviors within the universe. Our qualitative visualizations
indicate that maintainers of CRAN packages are more inclined
to update to the latest version of their dependencies. The
conservative nature of Maven artifact maintainers on the other
hand, further justifies the potential usefulness of the SUG.
Its model querying visualizations should assist maintainers
to gain intuitive insights and understand the opportunities
for updating components. We envision that an integration of
both the coexistence and DP temporal properties into a single
visualization would be beneficial. This is seen as future work.

In practice, basing update decisions solely on popularity
is not practical as there are often many other factors to
consider. Therefore for a complete toolkit, popularity should
be complementary to the many existing code and API com-
patibility checking tools. Ultimately, the maintainer’s personal
preference may override all suggestions of the crowd. Our aim
is to provide additional insights to maintainers who have to
make a timely choice.

Threats to Validity. The main internal threat to validity
is the real-world assessment of the usefulness of our model.
We believe that we are currently only at the conceptual
stage of the research. We have been working closely with
system integration industrial partners to develop and test our
visualizations. We have received positive feedback regarding
the modeling and particularly concerning coexistence. Another
threat is that the results that we show may not generalize to all
types of systems. We understand that in reality the repository
data can be modified such as when changing domain locations,
thus threatening the temporal property. Our investigations have
proven, however, that most SUGs hold the temporal property.

An external threat is that our datasets only include in-
formation about dependencies that are explicitly stated in
project configuration files, such as the Maven POM and R
Description files. It does not take into account reuse
such as copy-and-paste and clone-and-own. Although gauging
dependencies by the configuration file only provides for a
sample of the actual reuse, we believe this is sufficient to give
an impression of trends within each universe. We understand

that our data and analysis are dependent on the tools and
analysis techniques. We are confident our samples are large
enough to represent the real world.

VI. RELATED WORK

Next to work discussed in Section II and Section V, work
from the following domains is complementary:

Library Popularity Measures. Raemaekers et al. [10],
[51], [30] performed several studies on the Maven reposito-
ries about the relation between usage popularity and system
properties such as size, stability and encapsulation. Popularity
has also been leveraged in IDEs [23].

Code Search and Recommendations. Code search is
prominent among research on software reuse with many ben-
efits for system maintainers [52]. Examples of available code
search engines are google code [53]. Research tools such as
Ichi-tracker [54], Spars [50], MUDAblue [55] and ParserWeb
[56] are just a few of many available search tools that crawl
software repositories mining different software attributes and
patterns with different intentions.

Software Systems as Components Within an Ecosystem.
Recently, there has been an increase in research that perceives
software systems as being components that interact and form
dynamic relationships within an ecosystem. Work such as
Bosch [46] have studied the transition from Product Lines
to an Software Ecosystem level of abstraction. German et
al. [31] studied the GNU R project as an ecosystem over
time. Bogart et al. [12] studied how different ecosystems
deal with API changes of their evolving libraries. The results
show differences in each ecosystem policy and its supporting
infrastructure; and there is value in making community values
and accepted tradeoffs explicit and transparent in order to
resolve conflicts and negotiate change-related costs. Further-
more, Mens et al. [57] performed ecological studies of open
source software ecosystems with similar results. Other recent
work has been related to dependency networks [18], [58].

VII. FUTURE WORK AND CONCLUSION

In this paper, we present the SUG model as a means
to represent, query and visualize different super repositories
in a standardized and systematic manner. Immediate future
work focuses on evaluating the insights of these queries and
visualizations with actual system maintainers. Combining its
“wisdom-of-the-crowd” insights with complementary work on
compatibility checking of API changes, should give rise to
a comprehensive recommendation system for effective depen-
dency management.

ACKNOWLEDGMENTS

This work is supported by JSPS KANENHI (Grant Numbers
JP25220003, JP15H02683 and JP26280021) and the “Osaka
University Program for Promoting International Joint Re-
search.”.

297

REFERENCES

[1] C. Ebert, “Open source software in industry,” in IEEE Software, 2008,
pp. 52–53.

[2] L. Hainemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irl-
beck, “On the extent and nature of software reuse in open source java
projects,” in Proceedings of the 12th International Conference on Top
Productivity Through Software Reuse, 2011, pp. 207–222.

[3] Spring framework homepage, accessed 2018-01-01. [Online]. Available:
http://spring.io/

[4] Apache commons library homepage,accessed 2018-01-01. [Online].
Available: http://commons.apache.org/

[5] Maven central repository, accessed 2018-01-01. [Online]. Available:
http://mvnrepository.com/

[6] Comprehensive r archive network(cran), accessed 2018-01-01. [Online].
Available: http://cran.rstudio.com/

[7] Sourceforge repository,accessed 2018-01-01. [Online]. Available: http:
//sourceforge.net/

[8] Github repository, accessed 2018-01-01. [Online]. Available: https:
//github.com/

[9] R. E. Grinter, “Understanding dependencies: A study of the coordina-
tion challenges in software development,” Ph.D. Thesis. University of
California. Department of Information and Computer Science., 1996.

[10] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Proc. of Intl.
Comf. Soft. Main. (ICSM), Sept 2012, pp. 378–387.

[11] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in Proc. of. Work. Conf. on Rev. Eng. WCRE2012, Oct 2012, pp. 289–
298.

[12] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016, 2016, pp. 109–
120.

[13] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
pp. 1–34, 2017.

[14] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to api deprecation?: The case of a smalltalk ecosystem,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY, USA: ACM,
2012, pp. 56:1–56:11.

[15] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the pharo ecosystem
case,” in Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ser. ICSME ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 251–260.

[16] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+1 popular java apis,” in Proceedings
of the 32th IEEE International Conference on Software Maintenance
and Evolution., 2016.

[17] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the apache community upgrades dependencies: An evolutionary study,”
Empirical Softw. Eng., vol. 20, no. 5, pp. 1275–1317, Oct. 2015.

[18] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in oss packaging ecosystems,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), Feb 2017, pp. 2–12.

[19] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study
on npm,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 385–395. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106267

[20] S. Mirhosseini and C. Parnin, “Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?”
in Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2017. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 84–94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155577

[21] S. Chuan-Fong and V. Alladi, “Beyond adoption: Development and
application of a use-diffusion model,” Journal of Marketing, 2004.

[22] R. Holmes and R. J. Walker, “Informing Eclipse API production and
consumption,” in OOPSLA2007, 2007, pp. 70–74.

[23] D. S. Eisenberg, J. Stylos, A. Faulring, and B. A. Myers, “Using
association metrics to help users navigate API documentation,” in
VL/HCC2010, 2010, pp. 23–30.

[24] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proc. of IEEE Intl. Conf. on Prog. Comp.(ICPC13),
2013.

[25] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in ERCIM Workshops, 2009, pp. 57–62.

[26] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” in
TAIC PART, 2010, pp. 173–180.

[27] R. Bloemen, C. Amrit, S. Kuhlmann, and G. Ordóñez Matamoros,
“Innovation diffusion in open source software: Preliminary analysis of
dependency changes in the gentoo portage package database,” in Proc.
of Work. Conf. on Mining Soft. Repo. (MSR2014), 2014, pp. 316–319.

[28] R. G. Kula, C. D. Roover, D. M. German, T. Ishio, and K. Inoue,
“Visualizing the evolution of systems and their library dependencies,”
Proc. of IEEE Work. Conf. on Soft. Viz. (VISSOFT), 2014.

[29] R statistical computing and graphics project homepage,accessed
2018-01-01. [Online]. Available: http://www.r-project.org/

[30] S. Raemaekers, G. Nane, A. van Deursen, and J. Visser, “Testing
principles, current practices, and effects of change localization,” in
Mining Soft. Repo. (MSR), May 2013, pp. 257–266.

[31] D. M. German, B. Adams, and A. E. Hassan, “The evolution of the r
software ecosystem,” Proc. of European Conf. on Soft. Main. and Reeng.
(CSMR2013), pp. 243–252, 2013.

[32] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proc. Intl and ERCIM Principles of Soft. Evol.
(IWPSE) and Soft. Evol. (Evol) Workshops, ser. IWPSE-Evol ’09. New
York, NY, USA: ACM, 2009, pp. 57–62.

[33] Apache commons asm homepage, accessed 2018-01-01. [Online].
Available: http://asm.ow2.org/

[34] Apache commons io homepage, accessed 2018-01-01. [Online].
Available: http://commons.apache.org/proper/commons-io/

[35] Apache commons logging homepage, accessed 2018-01-01. [Online].
Available: http://commons.apache.org/proper/commons-logging/

[36] Apache commons lang homepage, accessed 2018-01-01. [Online].
Available: http://commons.apache.org/proper/commons-lang/

[37] Cran mass package homepage, accessed 2018-01-01. [Online].
Available: http://cran.r-project.org/web/packages/MASS/index.html

[38] Cran mvtnorm package homepage, accessed 2018-01-01. [Online].
Available: http://cran.r-project.org/web/packages/mvtnorm/index.html

[39] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Proc. of CSMR-WCRE 2014, 2014, pp. 308–312.

[40] Apache commons dbcp homepage, accessed 2018-01-01. [Online].
Available: http://commons.apache.org/proper/commons-dbcp/

[41] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” in Technical Report No. 2007-541,Queens University, Canada,
2007.

[42] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[43] M. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[44] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software
bertillonage: Finding the provenance of an entity,” in Proceedings of
the 8th Working Conference on Mining Software Repositories, 2011, pp.
183–192.

[45] T. Ishio, R. G. Kula, T. Kanda, D. M. German, and K. Inoue, “Software
ingredients: Detection of third-party component reuse in java software
release,” in Proceedings of the 13th International Conference on Mining
Software Repositories, ser. MSR ’16, 2016, pp. 339–350.

[46] J. Bosch, “From software product lines to software ecosystems,” in
Proc.of the Int Soft. Prod. Line (SPLC ’09), 2009, pp. 111–119.

[47] C. Seidl and U. Assmann, “Towards modeling and analyzing variability
in evolving software ecosystems,” in Proc. of the Int. Workshop on
Variability Modelling of Software-intensive Systems (VaMoS ’13), 2013.

[48] M. Nonaka, K. Sakuraba, and K. Funakoshi, “A preliminary analysis on
corrective maintenance for an embedded software product family,” IPSJ
SIG Technical Report, vol. 2009-SE-166, no. 13, pp. 1–8, 2009.

[49] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of
code clone genealogies,” in Proceedings of the 10th European Software

298

Engineering Conference Held Jointly with 13th International Symposium
on Foundations of Software Engineering, 2005, pp. 187–196.

[50] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking significance of software components based on use relations,”
Software Engineering, IEEE Trans., vol. 31, pp. 213–225, March 2005.

[51] S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proc. Conf. on Mining
Soft. Repo., ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 221–224.

[52] S. Bajracharya, A. Kuhn, and Y. Ye, “Proc. of work. on search-driven
dev.: Users, infrastructure, tools, and evaluation (suite 2011),” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
2011.

[53] Google code, accessed 2014-09-01. [Online]. Available: https://code.
google.com/

[54] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code come
from and where does it go? - integrated code history tracker for open

source systems -,” in Proc. of Inl Conf. on Soft. Eng., ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 331–341.

[55] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue:
an automatic categorization system for open source repositories,” Jour-
nal of Systems and Software, vol. 79, no. 7, pp. 939–953, 2006.

[56] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for
reusing open source code on the web,” in Proceedings of the IEEE/ACM
Intl. Conf on ASE, ser. ASE ’07. New York, NY, USA: ACM, 2007,
pp. 204–213.

[57] T. Mens, M. Claes, and P. Grosjean, “Ecos: Ecological studies of
open source software ecosystems,” in Soft. Main. Reeng. and Rev. Eng.
(CSMR-WCRE), Feb 2014, pp. 403–406.

[58] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR), May 2017,

pp. 102–112.

299

