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Abstract The popularity of third party libraries such as the Maven Central
and the CRAN repositories is a testament to software reuse activities in both
open-source and commercial projects alike. Studies have also highlighted the
risks and dangers associated when developers keep outdated library dependen-
cies in their applications. Intelligent mining of these massive software repos-
itories (i.e., super repositories) could unlock valuable knowledge pertaining
to such dependency-related decisions and reveal trends within the software
ecosystem. In this paper, we propose the Software Universe Graph (SUG)
Model as a structured abstraction of evolving software and their library de-
pendencies over time. To demonstrate practically and usefulness of the SUG,
we conduct an empirical study using 6,374 Maven artifacts and over 6,509
CRAN packages mined from their real-world ecosystems. Results show the
Maven ecosystem as having a more conservative approach to dependency up-
dating, while the CRAN ecosystem exhibits a more always updated approach
to dependencies. Novel visualizations of SUG model operations such as library
coexistence pairings and dependents diffusion uncover evidences to explain
popularity, adoption and diffusion patterns within each software ecosystem.
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1 Introduction

Reusing software by depending on libraries is now commonplace in both open
source and commercial settings alike [1,2]. Software libraries come with the
promise of being able to reuse quality implementations, thus preventing ‘rein-
ventions of the wheel’ and speeding up development. Examples of popular
reuse libraries are the Spring [3] web framework and the Apache com-
mons [4] collection of utility functions. Contributing to the popularity of these
and other libraries has certainly been the ease through which they can be ac-
cessed nowadays from ecosystems formed by a collection of super repositories
such as Maven Central [5], R’s CRAN [6], Sourceforge [7] and GitHub [8].

With new libraries and newer versions of existing libraries continuously be-
ing released, managing a system’s library dependencies is a concern on its own.
Improper dependency management can be fatal to any software project [9]. As
outlined in related studies [10–12], dependency management includes making
cost-benefit decisions related to keeping or updating dependencies on outdated
libraries. Such decisions are influenced by whether or not security vulnerabil-
ities have been patched and important features have been improved, but also
by the amount of work required to accommodate changes in the API of a newer
library version. Recent studies on library APIs have shown that a developer
responding to a new library updates is slow and lagging [13–16].

Meta-data recorded within these ecosystems can provide system main-
tainers valuable “wisdom-of-the-crowd” insights into these dependency-related
questions. Building on our work on visualizing the evolution of systems and
their library dependencies [17], we introduce the Software Universe Graph
(SUG) as a means to model the realities of popularity, adoption and diffusion
within a super repository. Popularity refers to the usage of a library over time.
Adoption refers to systems introducing a new library dependency. Diffusion,
inspired by use-diffusion [18], is a measure of the spread of library versions
over dependent systems. The abstract nature of our SUG enables generalizing
and hence comparing these aspects across different types of super repositories.

To evaluate the SUG model, we report on a large-scale empirical study in
which we construct SUGs for a large collection of Maven and CRAN super
repositories. Our goal is to evaluate: (1) construct real-world SUG models to
show the practical application and (2) through several case study examples
demonstrate the SUG usefulness when address library dependency manage-
ment issues. Our key contributions are:

– We introduce the fully formalized SUG model for representing super repos-
itories in a generic manner, which lends itself to being mined for insights
about popularity, adoption and diffusion.

– We define several metrics related to popularity, adoption and diffusion —all
in terms of formal operations on a SUG model. We also introduce several
SUG-based visualizations.

– In a large-scale study, we build SUG models for the very different real-
ities of the Maven and of the CRAN super repository. We demonstrate
that our visualizations intuitively provide valuable insights for dependency
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management. The study results empirically depict Maven users as reluc-
tant to update to newer library releases, with older library releases deemed
‘usable’ by the crowd. CRAN dependencies are more disciplined in this
regard.

2 Background

Studying library usage in terms of absolute popularity is not a new concept.
Holmes et al. appeal to popularity as the main indicator to identify libraries of
interest [19]. Eisenberg et al. improve navigation through a library’s structure
using the popularity of its elements to scale their depiction [20]. De Roover
et al. explored library popularity in terms of source-level usage patterns [21].
Popularity over time has received less attention. Mileva et al. study popularity
over time to identify the most commonly used library versions [22]. Follow-
up work applies the theory of diffusion to identify and predict version usage
trends [23]. Similar to our diffusion work, Bloemen et al. [24] explored the
diffusion of Gentoo packages. Using the economic bass model, they modeled
the diffusion of gentoo packages over time.

Other related work include Teyton and colleagues use of ‘library migration
graphs’ to identify candidate library migrations [11]. The migration graphs
offers a cyclic approach, much different to our incremental SUG model. Ad-
ditionally, our study investigates coexistence and diffusion instead of migra-
tion and our case study involves two different super repositories. Instead of a
single-dimensional analysis of popular library usage, we present an extensively
formalized SUG model with popularity and variety metrics and additional
complementary diffusion and coexistence plot visualizations. This provides for
a much richer understanding of any significant phenomena in the evolution of
libraries. Our generic model provides for generalization of popularity across
different super repositories.

3 Software Universe Modeling

This paper is concerned with intelligent mining of a large collection of soft-
ware repositories within an ecosystem, defined as super repositories. More
specifically, we present an abstract model to understand and compare adop-
tion, diffusion and popularity within its particular universe. We conjecture
that useful information such as popularity is indicative of a library reliability,
which is measured by significant usage within the ecosystem.

3.1 Software Universe Graph

We present the Software Universe Graph (SUG) as a structural abstraction
of a super repository. Figure 1 will serve as an illustration of the different
relationships within the graph. Let G = (N,E) for a graph G. N is a set
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𝑈𝑠𝑒 𝑎1 = 𝑥1

𝑈𝑠𝑒𝑑𝐵𝑦 𝑥1 = 𝑎1, 𝑞1, 𝑞2

𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞1
= 𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞2 = 𝐿𝑖𝑛𝑒𝑎𝑔𝑒 𝑞3
= 𝑞1, 𝑞2, 𝑞3

𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑥
=   𝑈𝑠𝑒𝑑𝑏𝑦(𝑥) = |𝑎1, 𝑞1, 𝑞2 |
= |{𝐿𝑖𝑛𝑒𝑎𝑔𝑒(a),𝐿𝑖𝑛𝑒𝑎𝑔𝑒(q1),𝐿𝑖𝑛𝑒𝑎𝑔𝑒(q2)}|
= 2

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑥1
= 𝑈𝑠𝑒𝑑𝐵𝑦 𝑥1 = 𝑎1, 𝑞1, 𝑞2
= 3

q1 q2 q3
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x2 x3x1

update
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Fig. 1: A conceptual example of the Software Universe Graph with formalized definitions
and notations.

of nodes, with each node representing a software unit. We consider both any
system version, such as SymmetricDs version 3.6.3 (SymmetricDs3.6.3) or
a library version Junit version 4.11 (Junit4.11) as software unit nodes. For
any SUG, the edges E are composed of Euse and Eupdate. Euse is a set of
use-relations and Eupdate is a set of update-relations. We first present Euse in
Definition 1 and 2. Eupdate is then introduced in Definition 3.

Definition 1 An edge u → v ∈ Euse means that u uses v. The defined func-
tions of Euse are:

Use(u) ≡ {v|u→ v} (1)

UsedBy(u) ≡ {v|v → u} (2)

Use-relations can be extracted from either the source code or configuration
files. As depicted in Figure 1, node a1 uses node x1. Also node x1 is used by
nodes a1, q1 and q2. Parallel edges for node pairs are not allowed. In this paper,
we focus on popular software units that are connected by many use-relation
edges.

Definition 2 For a given node u, popularity is the number of incoming use-
relation edges and is defined as:

popularity(u) ≡ |UsedBy(u)| (3)

For instance in Figure 1, for node x1, popularity(x1) = |UsedBy(x1)| =
|{a1, q1, q2}| = 3. As an extension, the popularity of any pair of nodes (u and
v) is defined by the number of common nodes connected by an incoming edge.
Formally,

popularity(u, v) ≡ |UsedBy(u) ∩ UsedBy(v)| (4)

We define u and v as being coexistence pairs if popularity(u, v) ≥ 1.
Take from Figure 1, popularity(x1, a1) = |{UsedBy(x1) ∩ UsedBy(a1)}| =
|{a1, q1, q2} ∩ {q1}| = |{q1}| = 1. Therefore in the Figure, x1 and q1 are
coexistence pairs.
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Definition 3 We represent an update-relation from node a to b using a⇒ b,
meaning that newer update b had been released from node a and is defined as:

a⇒ b ∈ Eupdate (5)

Update-relations refers to when a succeeding release of a software unit
is made available. Figure 1 shows that node q1 is first updated to node q2.
Later on, node q2 is updated to the latest node q3. Hence, q1 ⇒ q2 ⇒ q3.
We find that every node in the SUG should be denoted by three attributes:
<name,release,time>. For a node u, we then define:

– u.name Name is the string representation identifier of a software unit. We
introduce the name axiom: For nodes u and v, if u ⇒ v, then u.name =
v.name holds.

– u.release. Release refers the specific assigned change reference for a soft-
ware unit. For nodes u and v, if u ⇒ v then v is the immediate successor
of u. Note that the versioning pattern may vary from project to project.

– u.time. Time refers to the time-stamp at which node u was released. For
nodes u and v of u⇒ v, u.time < v.time.

An example of the attributes can be shown with the junit library. These at-
tributes belong to the most recent release1 (i.e., <name = "junit", version=

"4.11", time="2012-11-14">). We define a set of nodes weakly connected
by update-relations as a lineage. We are interested in all releases within a
lineage.

Definition 4 Lineage of a related set of nodes are determined through tran-
sitive update-relations. This is defined as:

Lineage(u) ≡ {v|v +⇒ u ∨ u +⇒ v ∨ u = v} (6)

where a
+⇒ b is the transitive closure on any update-relation a⇒ b.

The name axiom proves that all names in a lineage are the same. A lin-
eage of nodes is depicted in Figure 1, where Lineage(q1) = Lineage(q2) =
Lineage(q3) = {q1, q2, q3}. The lineage function enables more dynamic op-
erations. To differentiate between lineages, we now introduce an additional
operator.

Definition 5 We use the ‖ S ‖ operator to represent the number of different
lineage in a set of nodes in S.

‖ S ‖≡ |{Lineage(u)|u ∈ S}| (7)

Looking back at the example in Figure 1, suppose S = {a1, a2, x1}. ‖ S ‖=
|{Lineage(a1), Lineage(a2), Lineage(x1)}| = |{{a1, a2}, {x1}}| = 2. Com-
plex queries on our SUG model based on lineages are now possible. The previ-
ously defined popularity function alone is insufficient in reflecting the spread
or diffusion of a software unit across the software universe. We introduce a
variety function that allows use to measure diffusion.

1 http://mvnrepository.com/artifact/junit/junit/4.11: accessed 2017-04-01
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Fig. 2: Temporal property of the SUG

Definition 6 Variety represents the number of different lineages that use a
software unit.

variety(u) ≡‖ UsedBy(u) ‖ (8)

In Figure 1 we observe that node x1 is used by node related to Lineage(a1)
and Lineage(q1). Hence, variety is 2. Formally, variety(x1) =‖ {a1, q1, q2} ‖
= |{Lineage(a1), Lineage(q1), Lineage(q2)}| = 2.

Definition 7 The SUG has temporal properties. This describes the simultane-
ity or ordering in reference to time. Let SUG G = (N,E) be at time t. At time
t′ > t, we observe an extension of G, such that:

G′ = (N ∪∆N,E ∪∆E) (9)

where ∆E ∩ (N ×N) = ∅.

Figure 2 illustrates the temporal properties of the SUG. Here, it is ob-
served that G′ is composed of G augmented with newly added node a3 and its
corresponding a3 → x2 and a2 ⇒ a3 relations. A SUG grows monotonically
over time with only additions. Here we consider that modification or deletion
changes on the SUG do not occur.

Definition 8 A timed SUG specifies the state of the SUG at any point in
time. So for a SUG G = (N,E), we represent a timed SUG Gt at time t as a
sub-graph of G. Formally,

Gt ≡ (Nt, Et) (10)

where Nt = {u|u ∈ N, u.time ≤ t} and Et = {e|e ∈ E ∧ e ∈ Nt}.

We are now able to describe the temporal properties of popularity. We
introduce Popularityt(u) for a node u at time t. This provides the popularity
of u for Gt

2.

2 We define that Popularityt(u) = 0 if t < u.time
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Fig. 3: Illustrative example of the coexistence pairing. Let Figure 3(a). shows a typical SUG
G with respective lineages annotated. Figure 3(b) is the L-SUG G′. Finally in Figure 3(c),
the popularity is determined. In this case the coexistence popularity(a,b) is 2.

3.2 Query Operations on the SUG Model

We utilize the SUG model to query and retrieve useful information from the
software ecosystem. We now introduce Coexistence Pairing and Diffusion Plots
as examples of the visualization of popularity. Our rational is that popular us-
age of a software unit is evident by successful adoption and diffusion over its
predecessors. It is important to note that results do not indicate concrete evi-
dence of library compatibility, instead popularity suggests some recommended
usages based on the ‘wisdom of the crowd’.

Coexistence pairing examine and explores occurrences of specific combina-
tions between software components. We empirically visualize these coexistence
pairs, deemed to be compatible by the ‘crowd’. The coexistence popularity of
two nodes (i.e., popularity(u, v)) is used to establish a pairing between the
nodes. Alternatively, non coexistence pairs (i.e., popularity(u, v) = 0) suggest
combinations that are possible but not seen yet. To aggregate nodes by lineage,
we introduce a reduced SUG called Lineage SUG (L-SUG).

Definition 9 A Lineage SUG is used to merge all related nodes into a single
node. We define a Lineage SUG (L-SUG) G′ = (N ′, E′) of an SUG G =
(N,E = Euse ∪ Eupdate) where:

N ′ = {Lineage(u)|u ∈ N} (11)

and
E′ = {Lineage(u)→ Lineage(v)|u, v ∈ N ∧ u→ v ∈ Euse} (12)

In the L-SUG, all nodes belonging to the same lineage are merged with
all use-relations mapped onto the merged node. All update-relations are dis-
carded. Almost all defined functions for the SUG like popularity, should the-
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Fig. 4: Example of the coexistence operation. For the L-SUG P ′, for a node a, the coexis-
tence rank allows to determine popularity in relation to node a. In this example node s has
the highest coexistence rank.

oretically apply on the L-SUG3. An example of the L-SUG is explained in
Figure 3. Figure 3(a) shows a typical SUG G with respective lineages anno-
tated. Figure 3(b) depicts the lineage SUG G′. In Figure 3(c), the L-SUG
popularity of L-SUG nodes a and b is calculated. We now introduce the three
different types of coexistence pairing operations as follows:

1. L-SUG Lineage Pairs. We use the popularity of two L-SUG nodes. Fur-
ther exploration of the lineage pairs would lead to release pairs of these
lineages.

2. SUG Release Pairs. Once interested lineage pairs are identified, main-
tainers next decide on popular release combinations. To this end, we use
popularity of two nodes on the SUG to establish coexistence release pairs.

3. L-SUG Lineage Coexistence Rank. The coexistence rank returns pop-
ularity pairs relative to a specific L-SUG node. Formally, for a node u on a
set of L-SUG U ′, we compute all values of popularity(u, v) for v ∈ U ′ where
popularity(u, v) ≥ 1. We refer to them as the coexistence rank. For example
in Figure 4, consider L-SUG node a. The coexistence rank returns 5 results,
with node s having the highest coexistence rank of 2. Later in Section 5.2,
we demonstrate how the coexistence rank may uncover intuitive insights.

As an extension on our work of Library Dependency Plots (LDP) [17], we
introduce Diffusion Plots. For any software unit, DPs allow us to be able to
plot and track both popularity and variety at any given point in time t such
that popularityt(u) and varietyt(u) for a node u. The DPs provide a temporal
means to evaluate popularity and the adoptive behavior nature of a software
unit within its universe.

We introduce the two main attributes of the DP:

– Popularity and Variety Plots. DPs plot both the popularityt and
corresponding varietyt on a SUG. We use the plots to understand the
adoption and diffusion at both the lineage and release level.

3 An exception would be L-SUG variety, which is a lineage within an lineage. We consider
this to be out of scope for this study.
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Fig. 5: A simple example of the diffusion plot for the Maven mockito-core lineage release
1.8.4 and 1.8.5

– Diffusion Curve Types. The DPs allow us to perceive patterns of pop-
ularity for a specific release belonging to a lineage. Additionally, the DPs
provide insights on the adoption and diffusion within that universe.

In Figure 5, we show an example DP of the mockito-core lineage from
the Maven super repository. For illustration purposes –and to simplify the
curve– this DP only shows two releases. Note the crossing of lines, which is de-
scribed as the superseding point where mockito-core1.8.5 succeeds mockito-
core1.8.4 in both popularityt and varietyt. Section 5.3 details the DP visual-
izations.

4 Empirical Study

Our aim of the empirical study is to demonstrate: (1) practical application of
our formalized SUG model when applied to real-world data and (2) usefulness
by providing insights and comparisons between two different ecosystems. In
detail, we demonstrate how our model operations and visualizations supports
describe real-world data. All tools, scripts, data and results are freely available
from the paper’s replication package at http://goo.gl/cF2rJZ.

To demonstrate the practicality of the SUG, we construct and apply the
SUG model and its operations to a large collection of Maven 2 [5] and CRAN
[6] super repositories. We then perform model operations on both the Maven
and CRAN SUGs to demonstrate the usefulness of our models. By selecting
different examples, we show different insights on adoption, diffusion and pop-
ularity within each universe. The Maven Central super repository is a major
super repository that hosts many JVM project artefacts from the Java pro-
gramming language ecosystem. Note that most projects in this repository are
open-source Java, Scala or Clojure libraries (referred to as artefacts). R [25]
is a free software environment for statistical computing and graphics. The
Comprehensive R Archive Network (CRAN) belongs to an R ecosystem that
hosts sources, binaries and packages related to the R environment. For the
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Table 1: Construction of the SUG using attributes stored for Maven jar binaries and CRAN
zip Windows Packages.

Maven CRAN
File type POM.xml DESCRIPTION
Euse <dependency> Depends:

Eupdate <version> Version:

x.name <groupId>.<artifactId> Package:

x.release <version> Version:

x.time time-stamp of jar binary indicated build time

Table 2: SUG Statistics for Maven Libraries and CRAN Windows Packages

Maven CRAN
Time Period 2005-11-03 to 2013-11-24 2003-08-29 to 2014-08-22
# of nodes 188,951 93,184
# of lineages 6,374 6,506
Reuse 5,146 1,517

experiment, we only targeted contributed packages under windows4 (from R
version 1.7 to 3.1). We speculate that other platforms (MacOX and Linux
distributions) would yield similar results.

5 Empirical Results

5.1 SUG Construction and Analysis

Table 1 shows the different attributes collected from meta-files, that we used
to construct the our SUGs. We constructed each SUG by extracting (i) use-
relations, (ii) update-relations and (iii) software attributes such as the name,
release and time properties of each software in the ecosystem. Specifically, we
employed a typical extraction method of dependency information using meta-
files [11,26–28]. For the Maven libraries, we use the Project Object Model
file (i.e., POM.xml) that describes the project’s configuration meta-data —
including its compile-time dependencies5, while each CRAN package stores its
dependency information in a file called ‘DESCRIPTION’6.

Table 2 presents a summary of data mined for the experiment. For our
SUGs, our tools were able to mine and generate 188,951 Maven and 93,184
CRAN nodes from each super repository, spanning across 9-11 years. Note
that independent software units (i.e.,without use-relation edges) were not in-
cluded in SUGs. For the CRAN universe, we also include both available and
archived packages.7. The SUGs were built from the dates shown in Table 2.

4 http://cran.r-project.org/bin/windows/contrib/
5 Refer to http://maven.apache.org/pom.html for the data structure
6 http://cran.r-project.org/doc/manuals/r-release/R-exts.html#

The-DESCRIPTION-file
7 http://cran.r-project.org/web/packages/ reports 5,833 at time of experiment
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Table 3: Summary Statistics for L-SUG popularity

Maven CRAN
Min 1 1
1st Quartile 2 4
Median 6 8
Mean 38.8 64.62
3rd Quartile 20 22
Max 10160 26460

To understand the reuse within each universe, we measure how many lineages
are being used internally. For every node u in SUG U :

reuse =‖
⋃
u∈U

UsedBy(u) ‖ (13)

Table 2 details for each SUG. The results suggest that the CRAN universe
reuse is comprised of a much smaller subset of reuse libraries (i.e., 1,518 lin-
eages). On the contrary, in Maven there is an indication of more reuse within
the universe (i.e., 5,146 lineages are used by 6,374 other lineages). We find this
result not so surprising as most Maven artifacts comprise of either libraries or
frameworks that may depend on multiple libraries.

To determine popularity of a lineage, we apply the popularity function on a
L-SUG. Hence, from the Maven and CRAN SUGs, we derive their respective
L-SUGs with a lineage by lineage use relation. The statistical summary of
this L-SUG popularity distribution for both Maven and CRAN is presented
in Table 3. Surprisingly, we observe that except for the median and the 3rd
quartile, both distributions of the Maven and CRAN universes seem similar.
We had expected that since CRAN exhibited lower reuse (shown in Table
2), it would be more likely to generate higher popularity counts. For Maven,
the testing library Junit was the most popular, while dependency on the R
package release was found to be most popular in CRAN packages.

5.2 Coexistence Pairs using Heat Maps

We utilize a heat map matrix to visualize coexistence pairs. We define the
intensity as a normalized frequency count of popular pairs. For a given set of
nodes I, for pairs x, y ∈ I intensity is:

intensity(x, y, I) =
popularity(x, y)

max
i,j∈I
i 6=j

(popularity(i, j))
(14)

where x, y ∈ I and max returns the most frequent counts of pairing. The
Intensity function allows for normalized intensity shading of tiles from a scale
of 0 to 1 (darker indicates higher popularity) by returning the most frequent
pair count.
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Using the L-SUG popularity, we utilize the heat map and the intensity
function to plot popular pair frequency counts. Figure 6 illustrates examples
of these lineage pairings. Figure 6(a) depicts the pairing of eight selected Maven
Apache Commons [4] artifacts built for java. From the matrix, it is observed
that the most popular pairing is between commons-logging, a log helper
and commons-collections, a library used for handling data structures. In
Figure 6(b), we observe two cases of non coexistence. Figure 6(b) shows the
top 10 most popular dependent packages8 in CRAN. Notice that pairs (tcltk,
Matrix) and (tcltk, mvtnorm) lack coexistence. We speculate but cannot
confirm that common functionality of handling complex matrices manipulation
and GUI could be a reason. The pairing of (graphics,stats) as the most
frequent package combination is typical. This is because it is known as the ‘free
software environment for statistical computing and graphics’ [25]. In summary,
the results provide at a glance hints of popular pairings at the lineage level.

From the lineage pairing (L-SUG), popularity on the SUG is used to deter-
mine release pairs between two lineages. A heat map matrix with the intensity
is used for this visualization. Figure 7(a), 7(b), 7(c) and 7(d) depicts the release
pair plots between Maven’s asm [29], commons-io [30], commons-logging
[31] and commons-lang [32]. Figures 7(e) and 7(f) show release pair plots be-
tween CRAN’s mass [33], mvtnorm [34] and lattice. Different to the L-SUG
lineage pairs, the popularity is annotated at each pairing point. Additionally,
the release pair plots include the popularity of a specific version x and any
other software unit ‘outside’ Lineage(y). It is plotted at the end of the x and
y axis of the release pair plot. Formally, for each node n in U :

outside(x, y) =
∑
n∈U

Lineage(n)6=Lineage(x)
Lineage(n) 6=Lineage(y)

popularity(x, n) (15)

The outside pairs gauges relative popularity of alternative combinations.
For instance, in Figure 7(b), the popularity of pairing Maven commons-io1.4

and asm3.2 (popularity of 579) is greater than both ‘outside’ commons-io1.4

(popularity of 210) and asm3.2 (popularity of 75). This indicated this pairing
as very popular. On the other hand in Figure 7(e), CRAN’s mass7.3−7 and
mvtnorm0.9.96 (popularity of 15) lower than the ‘outside’ mass7.3−7 (popu-
larity of 411) indicate that the (mass, mvtnorm) pair combination is not the
most popular possible pairing combination.

Co-evolution patterns assist with interpretation of the evolution between
the two lineages. As depicted in Figure 8, co-evolving patterns such as the
diagonal co-evolving pattern can be identified from the heat map matrix. As
shown in Figure 8, pairings with older releases can be easily distinguished.
Figure 7(a) highlights commons-logging1.0.3 and commons-logging1.1.1

as popular pairings for asm releases, forming an almost vertical pattern. While
in Figure 7(b), there seems to be no apparent co-evolving pattern, with the

8 excluding the R dependency
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Fig. 7: Example of Coexistence Mapping for both Maven Artifacts (a,b,c,d) and CRAN
Packages (e,f). Note the different co-evolving patterns.

‘crowd’ settling on the asm3.2 and commons-io1.4 pairing. Patterns from Fig-
ure 7(c) indicates that older releases of commons-lang have popular pairings
even newer commons-logging releases. Figure 7(d) displays a more diagonal
co-evolving pattern betwee commons-lang and commons-io.

Back to Figures 7(a), 7(b), 7(c) and 7(d) the intensity indicates that the
most popular Maven ‘crowd choices’ are not necessarily the latest releases
of their respective lineages. Maven maintainers seem conservative with older
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older releases or if co-evolution (diagonal pattern) occurs.

Table 4: Top 10 filtered frequent counts of coexistence rank for lineage commons-dbcp

lineage coexistence rank
junit 37
commons-collections 28
log4j 28
commons-pool 27
commons-logging 25
hsqldb 20
commons-lang 15
derby 14
servlet-api 13
spring 13

versions. Quite to the contrary to the Maven pairings, CRAN packages depict
a more distinguished diagonal pattern of co-evolution. This is illustrated in
Figures 7(e) and 7(f). There are some inconsistencies such as non coexistence
and overlapping pairs. Take for instance, the (Mass7.3−7, mvtnorm0.9−92)
and ( Mass7.3−7, mvtnorm0.9−96) pairings. This is due to the same version
(Mass7.3−7) released over two consecutive R releases. Also different to Maven,
the most popular ‘crowd choices’ are the latest releases of their respective
lineage. We conjecture that regular updates by maintainers to comply with
the latest R release build check 9 may attribute to why CRAN packages are so
well maintained. Also as outlined by Mens [35], since only a single version is
allowed per release of R, maintainer must update to the compatible version or
risk being removed in the next release. Regular updates for R packages may
account for why the most popular releases being the most frequent release
pairs.

Finally from the Maven super repository, we provide an example of a
L-SUG coexistence rank. We perform the coexist function on a L-SUG of
Maven, thus allowing a lineage as a node input. The operation returns lin-

9 the latest build is accessible at http://cran.rstudio.com/
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Table 5: Top 10 frequent counts of coexistence rank for lineage commons-dbcp excluding
popular lineages.

lineage coexistence rank
mysql-connector-java 11
postgresql 10
c3p0 8
spring-test 7
cglib 6
aspectjweaver 4
bsh 4
geronimo-spec-jms 4
proxool 4
spring-web 4
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Fig. 9: Top Commons-dbcp filtered coexistence ranked lineage pairs

eages that at some point in time had a coexistence pairing. The Maven lin-
eage artefact commons-dbcp, a relational database connector [36] was used
as an illustrative example. Using the Maven L-SUG, the coexistence rank
returned 513 results. Table 4 pertains to the top 10 results. Note that the
list comprises of many non database, general-purpose libraries such as Junit
and log4j. For a more useful result, the use of L-SUG popularity thresholds
(shown in Table 3) can be used to remove the more general purpose lineages,
creating a more domain-specific result. We removed lineages that were above
the 3rd quartile popularity threshold. The filtered results are provided in Table
5.
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Compared to Table 4, the results in Table 5 provide more database spe-
cific entries such as mysql-connector-java10, postgrelsql11, c3p012 and
proxool13. The filtered results are not entirely database specific, for instance
the spring-web14 library. As an extension, we can further explore lineage pair-
ing of the domain-specific results in Table 5. Figure 9 depicts this result.
Popular pairings of both postgresl and mysql-connector-java suggests
that in regards to commons-dbcp, the postgresql and mysql databases are
popular among the Maven ‘crowd’. Note that in Figure 9, specialized library
geronimo-spec-jms15 is not featured, indicating non coexistence with par-
ing the results of Table 5. The non coexistence of mysql-connector-java
and aspectjweaver16 suggest that maintainers that depend on the aspec-
tjweaver library should pay special attention to ‘the wisdom of the crowd’,
as for one reason or another the crowd avoids its coexistence with the mysql-
connector-java library. Note that the additional operations of filtering and
heat map lineage pairing are examples of how users have the choice to use any
combination of SUG operations.

5.3 Diffusion Plots

A key element lacking in the coexistence pairing visualizations is the SUG
temporal properties. Diffusion Plots (DPs) are used to this end, so that adop-
tion and diffusion of a lineage is seen at any point in time. For any lineage,
we describe both popularityt and varietyt. For popularity, we plot the num-
ber of software units using a particular release of the lineage. Conversely in
the variety plot, we track the number of lineages that use a specific release.
Popularity is characterized as a curve that depicts important visual features,
such as the steepness, when the curve halts and when the curve is superseded
by a successive release curve. Figures 10 provides examples of DPs for both
Maven and CRAN.

Figures 10(a) and 10(b) depict DPs for two lineages within the Maven
Repository. Commons-lang is a helper utility library, notably assisting with
java string manipulation methods, basic numerical methods, object reflection,
concurrency, creation and serialization and system. Commons-logging is a
java logger helper library. As seen in Figure 10(a), Commons-lang2.4 (dark
green) it is overall the most popular although older release. Is is deemed
as ‘stable’ by the ‘crowd’. The steepness of the curve can be interpreted as
the adoption trend. For instance in the varietyt plot of Figure 10(b), we

10 mysql-connector-java is a MySQL database java connector
11 postgrelsql is a PostgreSQL Driver JDBC4
12 c3p0 is a JDBC Connection pooling / Statement caching library
13 proxool is a Java connection pool.
14 spring-web is the web component of the spring framework
15 geronimo-spec-jms is Java Message Service (JMS) spec library for the Apache Genon-

imo application server
16 aspectjweaver The AspectJ weaver introduces aspect oriented advices to java classes
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observe that Commons-logging1.0.4 has the most variety at any point in
time. However, closely looking at its curve (light green), popularity has proba-
bly peaked with the curve almost horizontal. Commons-logging1.1.1 (pink),
however, adopts a more diagonal curve, hinting future adoptions could fol-
low this trend. Note that the predecessor Commons-lang2.4 (dark green) in
Figure 10(a) is still adopted beyond the Commons-lang2.3 obsolete point,
making it more successful. Significant difference between popularityt and the
corresponding varietyt indicate lineages with abnormally high releases depend
on this specific lineage release. For instance, in Figure 10(a), on the y-axis

depicts popularityt > 150 while varietyt > 40. Such variances could be mis-
leading, so should be considered.

The DPs of the CRAN universe exhibit a much different adoption and
diffusion behavior. Figures 10(c) and 10(d) show the DPs of both Mass and
mvtnorm lineages. The Mass package supports functions and datasets for
Venables and Ripley’s MASS while the mvtnorm package computes multi-
variate normal and t probabilities, quantiles, random deviates and densities.
Depicted in Figure 10(c) and 10(d), with regular superseding of the previous re-
lease. Previous release curves never overlap but grow incrementally over time.
Note that the most popular library versions deemed by the ‘crowd’ are the
latest releases. Differences in corresponding popularityt and varietyt values
are minimal. This is consistent with the fact that only a single lineage release
is permitted per R release. The steepness of the rate of adoption is almost ver-
tical, meaning migration to newer releases were almost instantaneous, while
making previous releases obsolete. In Figure 10(c), the Mass7.3−7 curve fol-
lows an abnormal regrowth type shape possibly caused by migration to a newer
R release. In summary, DPs offer a visualization of adoption and diffusion pat-
terns for a lineage. This has shown to be particularly useful in the case of the
Maven universe, where adoption is slow and older releases still popular. Par-
ticularly, results in Figure 10(a) conincide with Figure 7(c), where the older
releases of Commons-Lang are still preferred newer versions. Superseding
points may provide hints on when safe to update. Additionally as shown, care
must be taken in the interpretation when there is a variance in popularityt
and varietyt.

6 Discussion

6.1 SUG Model Considerations

The SUG model provides for a standardized comparison of use-relations across
diverse structured universes of software repositories within the ecosystem. The
model allows for uncovering adoption, diffusion and popularity within a super
repository universe, that is useful for assessing dependency management issues
for developers. In this study, we only looked at two different ecosystems, how-
ever, we would like to investigate more ecosystems such as the ’C programming
language’ libraries universe. As the rise of cross-language (or platform) sys-
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tems emerge, potential future research avenues could be the adaptation from a
different universe and how system applications deal with cross-universe inter-
action. The use of an abstract model has its drawbacks, such as disregarding
more complex concepts such as package ‘containment’ and ‘transitive’ rela-
tionships. At this stage we only consider the basic elements of software usage
to measure popularity. As we study more systems, we will consider modeling
additional concepts common to all universes as extensions to the model. A
concern in the SUG construction was the assignments of the Ruse and Rup

edges in relation to the name attribute of the node. Threats specific to the
Maven and CRAN repositories, such as changed domains or lineage from more
multiple nodes exist. Nevertheless, conceptually the SUG model was success-
fully applied to each universe. For future improvements of accuracy the model
can expand beyond the name attribute for lineage classifications. We plan to
incorporate more sophisticated techniques and tools used in ‘code clone’ such
as code clone detection [37,38] and ‘origin’ analysis [39,40] to determine com-
mon lineage. Recently, Ishio et al. presented a promising technique to find
software provenance using its Software Bertillonage [41].

There exists many definitions of software variability and dependency rela-
tionships. In Software Product Line Engineering (SPL), terms such as ‘prod-
uct’ variability has been used extensively [42–44]. In the code clones field, Kim
et al. [45] coined clone ‘genealogies’ to track variability between software of
similar origins. To coincide with the abstract nature of the SUG and avoid
preconceptions, we decided on the term ‘lineage’ to describe variability be-
tween software releases. In addition, systems and libraries are not explicitly
distinguished. Graph cyclic based approaches such as ranking (such as page
ranking), reference counting and component ranking is common for measuring
popularity on graph based models [11],[46]. Our SUG model does not employ
any of these approaches as it is designed to rely on the dependency chains but
to measure immediate dependency characteristics directly.

6.2 Model Operations

As stated in our background, related studies have all reported maintainer’s
concerns with API breakages and incompatibilities of existing dependencies
over time. The results of this study revealed that the coexistence mapping pro-
vides interesting visual patterns. Assuming that usage implies stability, we can
identify safe combinations of lineages deemed by the ‘crowd’. The coexistence
operations on the SUG demonstrate more ‘intuitive’ aspects of the model,
although domain specific filtering may be required. Another complex but use-
ful operation that was not presented in this paper is the tracing of systems
that have abandoned a dependency. This could be future work. The Diffusion
Plots (DPs) provide for a more temporal analysis of popularity and diffu-
sion. Consistent with the SUG temporal properties, the restriction of adding
nodes results in incremental adoption curves. The accumulating growth pro-
vides for a comparison of previous releases. Overall the DPs describe different
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adoption behaviors within the universe. Our qualitative visualizations indicate
that maintainers of CRAN packages are more inclined to update to the latest
version of their dependencies. The conservative nature of Maven artifact main-
tainers on the other hand, further justifies the potential usefulness of the SUG.
Its model querying visualizations should assist maintainers to gain intuitive
insights and understand the opportunities for updating components. We envi-
sion that an integration of both the coexistence and DP temporal properties
onto a single visualization would be beneficial. This is seen as future work.

In practice, updates based solely on popularity is often not practical as
there are so many factors to consider. Therefore for a complete toolkit, us-
age popularity should be complementary to the many existing code and API
compatibility checking tools. Ultimately, the maintainer’s personal preference
may override all options. Our aim is to increase the maintainers knowledge by
making aware potential insights that assist the maintainer to make the right
choice.

6.3 Threats to Validity

The main internal threat to validity is the real-world assessment of the useful-
ness of our model. We believe that we are currently at conceptual stage of the
research and this is seen as future work. We have been working closely with
system integration industrial partners to develop and test our visualizations.
We have received positive feedback regarding the modeling and particularly
concerning coexistence. Another threat is that the results that we show may
not be generalized for all types of systems. At this stage we have studied other
systems but we are confident that current trends hold. We envision that only
further querying and usage we refine our results, thus future improvements
will be endeavored. We understand that in reality that the the repository data
can be modified such as when changing domain locations, thus threatening the
temporal property. Our investigations have proven, however, that most SUGs
hold the temporal property.

An external threat is that our datasets only includes information about
dependencies that are explicitly stated in project configuration files, such as
the Maven POM and R Description files. It does not take into account reuse
such as copy-and-paste and clone-and-own. Although gauging dependencies
by the configuration file only provides for a sample of the actual reuse, we
believe this is sufficient to give an impression of trends within each universe.
We understand that our data and analysis are dependent on the tools and
analysis techniques. Threats include parsing techniques. However, we believe
that our samples are large enough to be representative of the real world.

7 Related Work

Next to work discussed in Section 2 and Section 6.1, work from the following
research domains is complementary:
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7.1 Library Popularity Measures

Raemaekers et al. [10,47,26] performed several studies on the Maven reposito-
ries about the relation between usage popularity and system properties such as
size, stability and encapsulation. Popularity has also been leveraged in IDEs.
For instance, Eisenberg et al. improve navigation through a library’s structure
using the popularity of its elements to scale their depiction [20]. In this work,
we introduce the SUG model as a means to utilize the popularity and diffu-
sion measures. We define more complex popularity measures and visualizations
through an abstract model.

7.2 Code Search and Recommendations

Code search is prominent among research on software reuse with many ben-
efits for system maintainers [48]. Examples of available code search engines
are google code [49] and ohloh code search [50]. Tools such as Ichi-tracker
[51], Spars [46], MUDAblue [52] and ParserWeb [53] just a few of the many
available search tools that crawl software repositories mining different soft-
ware attributes and patterns with different intentions. For instance, SpotWeb
searches for different library usage patterns while MUDAblue automatically
categorizes related software systems.

We also crawl the super repositories, using mined data to construct our
abstract SUG Models. Differently, our work involves purely popularity metrics
to locate through model operations and visualization different coexistence and
diffusion behavior.

7.3 Software Systems as Components Within an Ecosystem

Recently, there has been an increase in research that perceives software systems
as being components that interact and form dynamic relationships within an
ecosystem. Work such as Bosch [42] have studied the transition from Product
Lines to an Software Ecosystem level of abstraction. German et al. [27] studied
the GNU R project as an ecosystem over time. Since the projects inception, the
results of the study indicate that user-contributed systems have been growing
faster than core-systems and identified differences of how they attracted ac-
tive communities. Bogart et al. [12] studied how different ecosystems deal with
API changes of their evolving libraries. The results show differences in each
ecosystem policy and its supporting infrastructure; and there is value in mak-
ing community values and accepted tradeoffs explicit and transparent in order
to resolve conflicts and negotiate change-related costs. Furthermore, Mens et
al. [54] perform ecological studies of open source software ecosystems with
similar results. Haenni et al. [55] performed a survey to identify the informa-
tion that developers lack to make decisions about the selection, adoption and
co-evolution of upstream and downstream projects in a software ecosystem. In
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this context, we consider that the SUG provides insights into the ecosystem
of a particular software universe. We suggest that the different visualizations
and patterns can complement the work and provide insights into the ecological
structure.

8 Future Work and Conclusion

With the emergence of Maven, CRAN, and GitHub super repositories, op-
portunities arise to uncover insights valuable to the management of depen-
dencies through intelligent super repository mining. In this paper, we present
the SUG model as a means to represent, query and visualize different super
repositories in a standardized and systematic manner. Immediate future work
focuses on evaluating the insigthfullness of these queries and visualizations
with actual system maintainers. Our work is towards empowering maintainers
to make more informed decisions about whether or not to update the library
dependencies of a system. Combining its “wisdom-of-the-crowd” insights with
complementary work on compatibility checking of API changes, should give
rise to a comprehensive recommendation system for dependency management.
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12. C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api: Cost negoti-
ation and community values in three software ecosystems,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ser. FSE 2016, 2016, pp. 109–120.
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in open source software: Preliminary analysis of dependency changes in the gentoo
portage package database,” in Proc. of Work. Conf. on Mining Soft. Repo. (MSR2014),
2014, pp. 316–319.

25. R statistical computing and graphics project homepage, accessed 2014-09-01. [Online].
Available: http://www.r-project.org/

26. S. Raemaekers, G. Nane, A. van Deursen, and J. Visser, “Testing principles, current
practices, and effects of change localization,” in Mining Soft. Repo. (MSR), May 2013,
pp. 257–266.

27. D. M. German, B. Adams, and A. E. Hassan, “The evolution of the r software ecosys-
tem,” Proc. of European Conf. on Soft. Main. and Reeng. (CSMR2013), pp. 243–252,
2013.

28. Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends of library usage,”
in Proc. Intl and ERCIM Principles of Soft. Evol. (IWPSE) and Soft. Evol. (Evol)
Workshops, ser. IWPSE-Evol ’09. New York, NY, USA: ACM, 2009, pp. 57–62.

29. Apache commons asm homepage, accessed 2014-09-01. [Online]. Available: http:
//asm.ow2.org/

30. Apache commons io homepage, accessed 2014-09-01. [Online]. Available: http:
//commons.apache.org/proper/commons-io/

31. Apache commons logging homepage, accessed 2014-09-01. [Online]. Available:
http://commons.apache.org/proper/commons-logging/

32. Apache commons lang homepage, accessed 2014-09-01. [Online]. Available: http:
//commons.apache.org/proper/commons-lang/

33. Cran mass package homepage, accessed 2014-09-01. [Online]. Available: http:
//cran.r-project.org/web/packages/MASS/index.html

34. Cran mvtnorm package homepage, accessed 2014-09-01. [Online]. Available: http:
//cran.r-project.org/web/packages/mvtnorm/index.html

35. M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN packages,” in
Proc. of CSMR-WCRE 2014, 2014, pp. 308–312.

36. Apache commons dbcp homepage, accessed 2014-09-01. [Online]. Available: http:
//commons.apache.org/proper/commons-dbcp/

37. C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” in Technical
Report No. 2007-541,Queens University, Canada, 2007.



Modeling Library Popularity within a Software Ecosystem 25

38. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code
clone detection system for large scale source code,” IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654–670, 2002.

39. M. Godfrey and L. Zou, “Using origin analysis to detect merging and splitting of source
code entities,” IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 166–181,
2005.

40. J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software bertillonage: Find-
ing the provenance of an entity,” in Proceedings of the 8th Working Conference on
Mining Software Repositories, 2011, pp. 183–192.

41. T. Ishio, R. G. Kula, T. Kanda, D. M. German, and K. Inoue, “Software ingredients:
Detection of third-party component reuse in java software release,” in Proceedings of the
13th International Conference on Mining Software Repositories, ser. MSR ’16, 2016,
pp. 339–350.

42. J. Bosch, “From software product lines to software ecosystems,” in Proc.of the Int Soft.
Prod. Line (SPLC ’09), 2009, pp. 111–119.

43. C. Seidl and U. Assmann, “Towards modeling and analyzing variability in evolving soft-
ware ecosystems,” in Proc. of the Int. Workshop on Variability Modelling of Software-
intensive Systems (VaMoS ’13), 2013.

44. M. Nonaka, K. Sakuraba, and K. Funakoshi, “A preliminary analysis on corrective
maintenance for an embedded software product family,” IPSJ SIG Technical Report,
vol. 2009-SE-166, no. 13, pp. 1–8, 2009.

45. M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of code clone ge-
nealogies,” in Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th International Symposium on Foundations of Software Engineering,
2005, pp. 187–196.

46. K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto, “Ranking sig-
nificance of software components based on use relations,” Software Engineering, IEEE
Trans., vol. 31, pp. 213–225, March 2005.

47. S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository dataset of met-
rics, changes, and dependencies,” in Proc. Conf. on Mining Soft. Repo., ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 221–224.

48. S. Bajracharya, A. Kuhn, and Y. Ye, “Proc. of work. on search-driven dev.: Users, infras-
tructure, tools, and evaluation (suite 2011),” in Proceedings of the 33rd International
Conference on Software Engineering, 2011.

49. Google code, accessed 2014-09-01. [Online]. Available: https://code.google.com/
50. Oholoh code search, accessed 2014-09-01. [Online]. Available: https://code.ohloh.net/
51. K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code come from and

where does it go? - integrated code history tracker for open source systems -,” in Proc.
of Inl Conf. on Soft. Eng., ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 331–341.

52. S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue: an automatic
categorization system for open source repositories,” Journal of Systems and Software,
vol. 79, no. 7, pp. 939–953, 2006.

53. S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for reusing open
source code on the web,” in Proceedings of the IEEE/ACM Intl. Conf on ASE, ser.
ASE ’07. New York, NY, USA: ACM, 2007, pp. 204–213.

54. T. Mens, M. Claes, and P. Grosjean, “Ecos: Ecological studies of open source software
ecosystems,” in Soft. Main. Reeng. and Rev. Eng. (CSMR-WCRE), Feb 2014, pp. 403–
406.

55. N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz, “Categorizing developer informa-
tion needs in software ecosystems,” in Proc. of Int. Work. on Soft. Eco. Arch. (WEA13),
2013, pp. 1–5.


