
Web-Service for Finding Cloned Files
using b-Bit Minwise Hashing

Kaoru Ito, Takashi Ishio, and Katsuro Inoue
Graduate School of Information Science and Technology

Osaka University, Osaka, Japan 565–0871
{ito-k, ishio, inoue}@ist.osaka-u.ac.jp

Abstract—Source code reuse is a common practice in software
development. Since industrial developers may accidentally reuse
source files developed by open source software, clone detection
tools are used to detect open source files in their closed source
project. To execute a clone detection, developers need a database
of existing open source software. While a web-service providing
clone detection using a centralized database is likely useful,
industrial developers are not allowed to submit their source code
to a public server on the Internet. To solve the problem, we
employ b-bit minwise hashing technique that enables to estimate
similarity of documents using only hash values of the documents.
Using the method, we implemented a file-clone detection web
service; it takes as input a hash value of a source file and returns
a list of similar source files in existing open source software.
Our hash comparison method is efficient, although an estimated
similarity may have a margin of error.

I. INTRODUCTION

Many software developers reuse open source software as a
part of their own projects in order to improve development
efficiency and quality. However, reuse information is often
unrecorded or easily lost through the development history[1].

Code clone detection technique is useful to recover the reuse
information. Developers would employ a code clone detection
tool to identify clones between their source files and existing
OSS files, and recover the reuse information. Based on this
idea, we have developed tools named Ichi Tracker[2] and FC-
Finder[3]. However, keeping the OSS database always updated
is tedious task for individual developers, so we would like to
have a third-party WEB service which centralizes the database
and its maintenance, and each developer sends local files as
query to the WEB service. On the other hand, a developer in
a company who develop proprietary software may not be able
to upload source files of their projects to such a WEB server,
because of a security policy of the organization.

Software Heritage project[4] provides a simple web-service
to takes as input a SHA-1 file hash and reports exactly the
same file in OSS projects. The service is promising but unable
to detect a file if a query file has been modified from the
original version. To address the problem, we propose a web-
service named Cloned File Detector that takes as input a
signature of a query file instead of the full content of the file.
We employ b-bit minwise hashing[5] that estimates similarity
between two documents using signatures created by minwise
hash functions[6]. Company’s developers can translate their
source files into hash signatures and submit them to the web-

service to find similar files in OSS projects. While the web-
service can compute similarity values between OSS files and
the submitted signatures, the web-service is hard to restore the
original file contents from the signatures.

II. FILE-CLONE DETECTION WEB SERVICE

Our web-service named Cloned File Detector is to detect
files in a database that are similar to a query file q. Our
similarity of source files is Jaccard index of trigrams, i.e. an
approximation of string matching [7], defined as follows.

sim(f1, f2) =
|trigrams(f1) ∩ trigrams(f2)|
|trigrams(f1) ∪ trigrams(f2)|

where trigrams(f) is a multiset of trigrams extracted from a
file f . An element of a trigram is a token in source code.
A token sequence is extracted using a lexer that ignores
comments and white space.

To enable industrial developers to use their closed source
file as a query, we employ an approximation using b-bit
minwise hashing signature [5]. Conceptually, the technique
approximates a similarity of files by using a hamming distance
of b × k bit vectors whose each b bit are corresponding to a
trigram in a file. In case of our implementation, we chose
parameters b = 1, k = 2048; in other words, 2048 trigrams
are selected from a file as samples and then translated into a
2048-bit file signature. Given a file signature sq instead of its
original file content q, an estimated similarity of a query q and
a file f in a database is computed as follows:

sime(sq, sf) = 1− d(sq, sf)

k
× 2

where sf is a file signature of f and d(sq, sf) is a hamming
distance of the signatures, respectively. Specially, we treat
sime as 1 when both SHA-1 hash values are equal and as
0 when sime is negative. It should be noted that an estimated
similarity may have a margin of error. Our preliminary analysis
shows that an absolute error is less than 0.05 for 99.9% of file
pair samples.

Our web-service takes as input a file signature sq and
extracts files that are likely similar to q using estimated
similarity as follows:

CFD(sq) = {f |sime(sq, sf) ≥ th}

where th is a threshold (0.7 is used in our current imple-
mentation). The extracted files are sorted by their estimated

TABLE I
A LIST OF FILES SIMILAR TO A QUERY FILE PNGWRITE.C IN FIREFOX 45.0B5.

Rank File SHA1 SHA1 w/o space File Name Estimated Actual
and comment Similarity Similarity

1 c4419962... 304cd806... firefox-45.0b5/media/libpng/pngwrite.c 1.000000 1.000000
2 3c27631a... 304cd806... firefox-47.0b5/media/libpng/pngwrite.c 1.000000 1.000000
3 4410037a... 3fee91a3... thunderbird-44.0b1/mozilla/media/libpng/pngwrite.c 0.999023 0.999026
4 f1faf25c... 0e3bdb81... qtbase-opensource-src-5.6.0/src/3rdparty/libpng/pngwrite.c 0.977539 0.974437
5 d5d6ff67... 0e3bdb81... libpng-1.6.21/pngwrite.c 0.977539 0.974190

texlive-bin-2015.20160213.39691/libs/libpng/libpng-src/pngwrite.c
6 96b86f7d... e47a2fbd... stella-4.7/src/libpng/pngwrite.c 0.977539 0.974190
7 bc1ad57e... 3f63477c... libpng-1.6.22/pngwrite.c 0.914062 0.913829

similarity. If tied, an alphabetical order of file paths in OSS
packages is used. If a user provided a SHA-1 file hash for q,
the web-service highlights exactly the same file in a resultant
list.

Our database is based on a snapshot of the Snapshot Archive
of Debian GNU/Linux[8]. The archive includes all the existing
source code packages released for Debian from 2005 until the
present. While Debian package maintainers somtimes apply
their own patches, we included only original source tarballs
whose names matched a pattern “*.orig.*”.

Our current implementation supports Java and C/C++ files,
while various programming languages are used by OSS
projects. We use ANTLR lexers to translate each source
file into tokens, and apply a common set of hash functions
to compute a file signature. Hence, the service is easy to
extend for other languages. We do not discuss hash function
implementations due to the limited space.

This is a kind of detection technique for type 3 clones,
so that the Cloned File Detector can not extract only type 2
clones. However, the result set includes not only type 3 clones
but also type 2 clones.

III. EXAMPLE USE CASE

Our demonstration version of the web service is publicly
available1. Due to the limited server resource, the service
uses a partial database including 573,000 files. A signature
computation tool is also available on the website. Given a file
signature, the web service returns a list of files that are likely
similar to the given file.

Table I shows an example output of Cloned File Detector;
the query file is pngwrite.c in Firefox 45.0b5, that is a
variant of libpng 1.6.21 that supports Animated PNG. The
web-service detected similar files in the OSS database and
reported their SHA-1 file hash, SHA-1 computed excluding
whitespace and comments, file names, and estimated similarity
values. A number of file names are linked to a single file SHA-
1 because the files have the same content. In the output, the top
file is exactly the same as the query file. The second file has
the same content except for comments. The third and fourth
files are likely different versions of the same file. The fifth file
is the original version of the query file, according to a commit
message in the source code repository of Firefox.

1http://sel.ist.osaka-u.ac.jp/webapps/ClonedFileDetector/

The actual similarity values in the table are not directly
provided by the web service, because the web service cannot
compute actual similarity without a query file content. The
web-service provides a download link for each reported file
so that a user can analyze them without uploading a query
file. Unless the exact copy of a query file is found in the
database, the web-service is hard to know the actual content
of the query file.

IV. CURRENT STATUS AND FUTURE WORK

Cloned File Detector is a web-service that takes as input
a file signature of a query file and detects similar files in a
database. Although estimated similarities may have a margin
of errors, users are not required to submit their source code.

In future work, we need to evaluate the accuracy of the
estimated similarity compared with the actual similarity. We
also would like to extend the service to accept a set of files as
a query so that a user can easily investigate an original version
of the files.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP25220003, JP26280021, and JP15H02683.

REFERENCES

[1] Pei Xia, Makoto Matsushita, Norihiro Yoshida, Katsuro Inoue, Studying
Reuse of Out-dated Third-party Code in Open Source Projects, Computer
Software, Vol.30, No.4, pp.98-104

[2] Katsuro Inoue, Yusuke Sasaki, Pei Xia, Yuki Manabe, Where Does This
Code Come from and Where Does It Go? - Integrated Code History
Tracker for Open Source Systems -, Proceedings of 34th International
Conference on Software Engineering, pp.331-341, Zurich, Switzerland,
2012-05.

[3] Yusuke Sasaki, Tetsuo Yamamoto, Yasuhiro Hayase, Katsuro Inoue,
Finding File Clones in FreeBSD Ports Collection, Proceedings of the
2010 7th IEEE Working Conference on Mining Software Repositories,
pp.102-105

[4] Roberto Di Cosmo, Stefano Zacchiroli, Software Heritage
https://www.softwareheritage.org/

[5] Ping Li, Arnd Christian Konig, b-Bit Minwise Hashing, Proceedings of the
19th International Conference on World Wide Web, pp.671–680, 2010.

[6] Moses S. Chariker, Similarity Estimation Techniques from Rounding
Algorithms, Proceeding STOC ’02 Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing Pages 380-388

[7] E. Ukkonen, Approximate string-matching with q-grams and maximal
matches, Theoretical Computer Science, vol. 92, no. 1, pp. 191–211,
January 1992.

[8] Debian GNU/Linux, The snapshot archive, http://snapshot.debian.org/
(Accessed August 19, 2016).

http://sel.ist.osaka-u.ac.jp/webapps/ClonedFileDetector/
http://snapshot.debian.org/

	Introduction
	File-Clone Detection Web Service
	Example Use Case
	Current Status and Future Work
	References

