
修士学位論文

題目

Detection of Fault Introduced by Change Inconsistency

In Code Clones

(コードクローンに対する一貫性のない変更に起因する欠陥の検出)

指導教員

井上 克郎 教授

報告者

Yii Yong Lee

平成 20年 2月 8日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 19年度 修士学位論文

Detection of Fault Introduced by Change Inconsistency In Code Clones
コードクローンに対する一貫性のない変更に起因する欠陥の検出

Yii Yong Lee

Abstract

Large software tends to have a significant amount of similar code, commonly known
as code clones. Often the code clones are introduced through copy-and-paste process for
code reuse purpose where the pasted code usually will go through some modifications such
as renaming of identifiers and changing of parameters. When these modifications are done
manually, there is possibility that the renaming or changing is not completely applied to
all relevant instances by mistake, therefore introducing unintended inconsistency which is
considered as bug to the system.

In this thesis, we propose a method using token comparison approach to detect bugs
caused by abovementioned modifications. Our method tokenizes detected clones and per-
forms a comparison to find out inconsistencies between them. The inconsistencies are then
ranked based on predefined metrics to produce a bug candidate list. We implemented our
method and evaluated on open source project. Our tool has found real bugs from the test
subject. We believe our tool is suitable to serve the purpose of detecting code clone-related
bugs in large software.

Keywords

Software Maintenance
Change Inconsistency
Inconsistent Renaming Bug

1

Contents

1 Introduction 5
1.1 Problem Definition . 5
1.2 Research Goal and Contributions . 5
1.3 Structure of the Thesis . 6

2 State of the Clone 8
2.1 Definitions . 8
2.2 Reasons of Presence of Code Clone . 8
2.3 Code Clone Detection Tools . 10
2.4 Comparison on Code Clone Detection Tools 12

3 Detection of Fault in Code Clones 14
3.1 Lexical Analysis . 15
3.2 Mapping Analysis . 17
3.3 Result Filtering . 18

4 Implementation of Fault Detection Tool 20
4.1 Overview . 20
4.2 Code Clone Detection . 20
4.3 Code Clone Filtering . 21
4.4 Code Clone Tokenization . 23
4.5 Visualization of Fault Candidate . 24

5 Case Study on Linux-2.6.6 26
5.1 Experiment Parameters . 26
5.2 Filtering Code Clones . 26
5.3 Detecting Bugs . 27

5.3.1 Bug Candidates . 27
5.3.2 Bugs Verification . 28

6 Discussion and Related Work 30
6.1 Limitation of Tool . 30
6.2 Related Work . 30

7 Conclusion 31

References 33

Appendix 35

2

List of Figures

1 Clone Pair and Clone Set . 9
2 Fault Detection Approach Overview . 14
3 Example of Code Clones . 15
4 Tokenization of Code Clone . 16
5 Mapping of Identifiers in Clone Pair . 17
6 Example of CCFinfer Output file . 22
7 Snapshot of System’s Graphical Interface 24
8 Bug Caused by Inconsistent Renaming of Identifier 28

3

List of Tables

1 Comparison on Code Clone Detection Tools 12
2 Identifier Mapping Result for Clone Pair in Figure 3 18
3 Number of Code Clones in Linux 2.6.6 . 27
4 Number of Clone Pairs in Linux 2.6.6 . 27
5 Number of Bug Candidates in Linux 2.6.6 27
6 Genuine Bugs Found in Linux 2.6.6 . 29

4

1 Introduction

Code cloning is regarded as one of the major threats to software maintenance. A
system containing a large proportion of code clones is more error prone and resistant
to change. Despite its negative impacts, code cloning is a common practice in software
development even to the professional programmers.

In this chapter, we explain the center problem brought by code cloning that we would
like to address, followed by our research goal and major contributions. At the end of this
chapter, we provide an outline for the subsequent chapters.

1.1 Problem Definition

Recent studies show that large software systems contain a significant amount of iden-
tical or similar code, commonly known as code clones. For instance, [2] found that 19%
of the entire source code of X Window system (714,479 lines of code) was identified as
duplicates. Another study [16] found that 12% of the Linux file system (279,118 lines of
code) involved in code cloning activity.

In many cases, code clones are introduced to the program through copy-and-paste
activity. While this practice can greatly reduce programming effort by reusing code in fast
and easy way, it is prone to create bugs. During code cloning, the pasted code will normally
go through some modifications in order to implement the desired functionality correctly.
One of such modifications is to rename all instances of an identifier in pasted code. When
this modification is done manually, there is possibility that the renaming is not completely
applied to all relevant instances by mistake, therefore introducing unintended inconsistency
which is considered as bug to the system. According to [6, 20, 12], abovementioned
unintended inconsistency is actually happened in production systems.

Although manual inspection is an effective method to find out bugs in program, it
would be too time-consuming and impractical for large software system. Jablonski et
al. [14] proposed a tool called CReN, which is implemented as a plug-in to the integrated
development environment (IDE) to track copy-and-paste activities and to ensure consistent
renaming of identifiers. However, CReN is only applicable when coding a new program or
to add new code to an existing program. As such, there is clearly a pressing need to have a
tool that can detect bugs introduced by inconsistent renaming of identifiers in production
systems.

1.2 Research Goal and Contributions

The detection of code clones has been an emergence research topic since the presence of
duplicated code was identified as one of the factors that decreases software maintainability.
In parallel with the detection technique, many studies on visualization and refactoring

5

support of code clones have been done. These works improve the understanding of code
clones in large software and assist to eliminate code clones by extracting them into a
separate new procedure.

On the other hand, research on technique that supports the detection of code clone-
related bugs is relatively little. Given the extensive use of copy-and-paste operations and
their tendency to introduce bugs as described in section 1.1, an aid to the detection of
bugs especially in production systems is indeed necessary.

In this research, we propose a method to detect bugs caused by inconsistent change
of identifiers. When it comes to a software with millions lines of code, developer always
clueless about the starting point to find out these bugs. The proposed method address this
problem by creating a list of possible bugs of the system. By reviewing a small portion of
source code, one is able to identify real bugs which may have lurked in the software for
long time.

In summary, the research goal is to provide support and to alleviate the effort on
detection of bugs introduce by change inconsistencies for large software system.

List of Contributions

The work presented in this thesis contains the following contributions:

• We propose an approach to detect bugs introduce by inconsistent renaming of identi-
fiers and developed a tool based on this approach. The tool comes with an interface
that provides necessary information presented in decent way to ease the process of
reviewing bug candidates.

• We present a case study on large open source software. We checked the potential
bugs detected by our tool against the change log and we found that many of them
has been corrected in later version of the subject software. Our approach is proven
to reveal bugs.

1.3 Structure of the Thesis

Chapter 2 presents the background knowledge and technologies relevant to our re-
search. We give a clear definition of important terms related to code clones used in this
thesis. We explain the reasons why code clones exist in software. Also, an overview on
some of the clone detection tools available and their comparison is provided.

Chapter 3 explains our approach to solve the defined problem, which is to detect change
inconsistency-induced bugs. The approach consists of three major steps, and we give the
details of what each step does.

Chapter 4 discusses the technologies used in order to implement our bug detection
tool. We offer the reasons why we have chosen these technologies in our implementation.

6

Chapter 5 presents the case study on Linux kernel version 2.6.6. We show the outcome
that we obtained through experiments, explain our validation method on the experiment
results and offer a discussion regarding the results.

Chapter 6 gives the limitation of our tool and discusses some related work.
Finally in Chapter 7, we summarize our work and give an overlook on possibilities for

future work.

7

2 State of the Clone

In this chapter, we give the definitions of some terminology used in code clone de-
tection, followed by the reasons why code clones exist in software. We also provide a
brief introduction to some tools available for code clone detection. Finally, we present a
comparison on these tools.

2.1 Definitions

The literature currently gives no consistent definition on terminology of code clone-
related technologies. Therefore, we defines the terminology and expressions used in the
context of this thesis as below.

Definition 1 (Code Clone) A code clone is a piece of source code that is
identical or similar to another.

Definition 2 (Clone Relation) A clone relation is defined as an equivalence
relation (reflexive, transitive, and symmetric relations) on code fragments. It
holds between two code fragments if and only if they are in same token se-
quences. [15]

Definition 3 (Clone Pair) A clone pair is a pair of code fragments if the
clone relation holds between them.

Definition 4 (Clone Set) A clone set is a maximal set of code fragments
where the clone relation holds between any tuple of code fragments in the set.

The above definitions are further explained using the example illustrated in Figure 1.
In this example, there are two source files with five code fragments, f1 to f5. f2 holds
the clone relation with f4, while f1,f3, and f5 hold the clone relation with each other.
Therefore, four clone pairs and two clone sets exist.

clone pair : (f2, f4), (f1, f3), (f1, f5),(f3, f5)

clone set : {f1, f3, f5}, {f2, f4}

2.2 Reasons of Presence of Code Clone

Code clones are actively produced because of various reasons. We summarize some
common reasons in the following list.

8

Figure 1: Clone Pair and Clone Set

Copy and Paste
Copy and paste is considered as a primitive reuse mechanism that is commonly
practiced by every programmer. Although many methods have been proposed
to develop reusable software components, there still exist a lot of ad-hoc reuses
through copying and pasting of code.

Lacking Abstraction Mechanism
If the programming language lacks of some abstraction mechanisms such as
inheritance, generic types, and parameter passing, programmers will have to
implement these as idioms repeatedly. This will lead to possibly small but
potentially frequent clones [21].

Stereotyped Process
File open/close operation and database access are typical stereotyped processes
while developing a software product. Cordy reported in [7] that there are only
limited number of different kinds of financial tasks, and the data structure and
programs to carry out these tasks are therefore very similar. Code cloning is
a common practice in financial industry.

Performance Consideration
While developing real-time application, if the compiler does not offer to inline
the code automatically, this will have to be done by hand. The expanded code
becomes code clones. Also, some common operations may have been hand-
optimized to achieve best performance. The same existing optimized code is
applied whenever the same operation is needed.

Generated Code
Code created by code generators tends to include many code clones since the

9

tools often use the same template to generate same or similar logic code. Only
identifier names of these code clones are different from each other.

2.3 Code Clone Detection Tools

In recent years, several tools have been developed for code clone detection. The tools
are based on various techniques, including token-based analysis, line-based analysis, ab-
stract syntax trees, program dependency graphs, and metrics. The following are brief
descriptions of some of these tools.

Dup
Dup [1, 2] uses a line-based comparison approach to detect clones. The source
code is represented in a sequence of lines. White spaces and comments are
eliminated, and identifiers (e.g. function names, variable names, and type) are
replaced with a special identifier. The resulting normalized lines are compared
and the extraction of matches is performed using suffix-tree algorithm. Dup
returns the longest possible fragments of cloned source code. To avoid getting
too short, the minimum length of a code clone can be specified. The tool use
a dot plot graph to visualize the result and to ease the comprehension of the
result.

The extraction of matches in Dup leads to O(n) time complexity, where
n is the number of lines in the input. The line-by-line method cannot detect
the clone if the line structure is modified. In free-format language such as C,
C++, and Java, line breaks in source code have no semantic meaning. They
are often placed and relocated based on programmer’s preference.

Duploc
Duploc [8] is a clone detection tool that applying a language independent
approach. In this approach, the code is only slightly transformed using string
manipulation operations. Comments and white spaces are removed to get a
condensed form of the line. Each transformed source line is then compared
to every other source line by string-matching. The result is a boolean true
if two lines match. The value is stored in a matrix where the coordinate is
determined by the line index.

Clone pairs are displayed in the form of a scatter plot directly derived from
the matrix created during source line comparison. A pattern matcher is run
over the matrix to catch cloned code that was changed inside one line of code.

The necessary comparison leads to a complexity of Ω(n2) for input size of
n lines which is definitely too expensive. In order to reduce the computational

10

complexity and therefore increase the scalability of tool, a hash function for
line is introduced.

CloneDR
CloneDR [3] parses the source code and produces an abstract syntax tree (AST)
as first step. After that, three algorithms are applied.

The first algorithm is to detect duplicated subtrees. In order to find match-
ing candidates with some variations, the subtrees are not checked for equality
but rather for similarity. For this reason, the subtrees are categorized using
a hash function into buckets and only the subtrees in the same bucket are
compared with each other.

The second algorithm is to detect clone involving certain recurring frag-
ments like sequences of declarations and statements. The algorithm returns
the longest sequence, thus reduces the number of clones but increases their
average size.

The third algorithm looks for combinations of clones that can be generalized
by a most general unifier.

The computational complexity involved in CloneDR is O(n), where n is
the number of subtrees of the source files. In AST approach, it is possible to
transform the source trees to regular form but AST-based transformation is
generally expensive since it requires full syntax analysis and transformation.

CCFinder
CCFinder [15] is a clone detection tool that applicable to large-scaled software
systems with affordable computational complexity. The tool has relatively
small language dependent parts which make it adoptable to many languages.
The clone detection process of CCFinder consists of the following steps.

1. Lexical Analysis: Each line of source files is divided into tokens corre-
sponding to lexical rule of the programming language. The tokens of all
source files are concatenated into a single token sequence. White spaces
and comments are removed in this step. These suppressed characters are
kept in memory for later formatting of the result.

2. Transformation: The token sequence is transformed based on transfor-
mation rules that aimed at regularization of identifiers and identification
of structures. Details of these transformation rules can be found in [15].

3. Match Detection: From all the substrings on the transformed token
sequence, equivalent pairs with minimum length defined by user are de-
tected as clone pairs.

11

4. Formating: Each location of detected clone pairs is converted into line
and column numbers on the original source files.

2.4 Comparison on Code Clone Detection Tools

In this section, we will briefly compare some attributes of the clone detection tools
presented previously. There are literatures [4, 5] that provide comprehensive comparison
and evaluation on them.

The literatures generally agree that there is no clear winner among code clone detection
tools because all tools have their strength and weaknesses. Therefore, they are suitable
for different tasks and contexts. We are particularly interested to compare the following
attributes among the tools. The comparison is mainly refer to [4, 9].

Approach
Both Dup and CCFinder use a token comparison approach. However, the
granularity of Dup is on line level. Duploc compares whole lines to each other
textually. CloneDR partitions subtrees of the abstract syntax tree of a program
and compares subtrees in the same partition through tree matching.

Scalability
Bellon et al. evaluated all four tools in their work. CloneDR, Dup and
CCFinder were able to analyze their largest subject program, postgresql but
Duploc failed to do it. Postgresql consists of 235K SLOC written in C.

Recall
Dup, CCFinder and Duploc have higher recall as compared to CloneDR. In
other words, tools based on token and text have higher recall.

Precision
CloneDR gives higher precision as compared to Dup, CCFinder and Duploc.
This is the opposite case of recall.

Table 1: Comparison on Code Clone Detection Tools

Tool Approach Scalability Recall Precision
Performance

Speed Memory Consumption

Dup Token High High Low V. High Low

Duploc Text Low High Low Low High

CloneDR AST High V. Low V. High Low High

CCFinder Token V. High High Low High Low

12

Performance
For both execution speed and memory consumption, Dup and CCFinder are
superior to CloneDR and Duploc.

13

3 Detection of Fault in Code Clones

This chapter introduces an approach with the goal of solving the problem defined in
Section 1.1. Figure 2 gives an overview of the approach.

The initial input to the approach is source files and the final output will be a bug
candidate list which gives the details such as location of potential bugs. The approach
is generally divided into clone detection phase and inconsistency detection phase. The
inconsistency detection phase can be further divided into 3 steps, namely lexical analysis,
mapping analysis and result filtering.

First, the clone detection tool detects code clones in input source files and produce a
clone position file that contains information about the location of detected clones. Then,
the code fragments are retrieved from source files based on the clone position file and they
are passed to lexical analyzer for tokenization. Next, token mapper performs mapping
of identifiers on each tokenized clone pairs. The mapping aims to detect change incon-
sistencies in clone pairs. The inconsistencies detected will finally go though some metric
calculations in order to filter out insignificant inconsistencies which have low possibility
to be a bug.

As illustrated in Figure 2, the approach is a step-by-step process where the later step
in the approach is to further process the data obtained from the previous step. We use an
existing tool to perform the clone detection task. However, the approach is designed to
be easily adaptable to other available clone detection tools, especially those token-based
tools. It is realized through the implementation of clone information processor module,
which serve as the interface between output file of clone detection tool and subsequent
steps in our approach. We will describe how this work in detail in Chapter 4.

The three steps in inconsistency detection phase will be explained in following sections.

Figure 2: Fault Detection Approach Overview

14

127: o_count = v_count;
128: o_var = varse;
129: o_names = v_names;
130:
131: v_count += STORE_INCR;
132: varse = (char **) malloc (v_count*sizeof(char *));
133: v_names = (char **) malloc (v_count*sizeof(char *));
134:
135: for (indx = 3; indx < o_count; indx++)
135: varse[indx] = o_var[indx];
137:
138: for (; indx < v_count; indx++)
139: varse[indx] = NULL;

161: o_count = a_count;
162: o_ary = arrays;
163: o_names = a_names;
164:
165: a_count += STORE_INCR;
166: arrays = (char **) malloc (a_count*sizeof(char *));
167: a_names = (char **) malloc (a_count*sizeof(char *));
168:
169: for (indx = 1; indx < o_count; indx++)
170: varse[indx] = o_ary[indx];
171:
172: for (; indx < v_count; indx++)
173: lists[indx] = NULL;

Figure 3: Example of Code Clones

3.1 Lexical Analysis

The general goal of lexical analysis in our approach is to transform the code clones
detected in clone detection phase into structure that afterward fed into the mapping
analysis step. Code clones that exist in target software are divided into tokens according
to lexical rules of the programming language and each of these code clones will form a
token sequence. While lexical analyzer scans through the code clones, it tokenizes them
and identifies tokens made up by identifier. The position of these tokens is stored because
they form the comparison unit in mapping analysis. Comments and white spaces are
eliminated, giving a normalized token sequence.

In a clone pair, if one code fragment is an exact copy without modification of another,
or only variable, type or function identifiers were changed, the resulting normalized token
sequences will have the same number of tokens with identifier at the same position (i.e.
same token index). Tokenized clone pairs that fulfill this criteria will be selected for further
processing in next step.

15

Figure 4: Tokenization of Code Clone

16

Figure 5: Mapping of Identifiers in Clone Pair

In Figure 3, code fragments consist of line 92-99 and line 111-118 are detected as a
pair of code clones. Each of these code fragments will be tokenized as shown in Figure
4, giving two token sequences. Since these two code fragments are syntactically identical,
the resulting token sequence will have the same number of token with identifier at the
same position in each normalized token sequence.

3.2 Mapping Analysis

Mapping analysis aims to identify the identifier name inconsistency between a clone
pair. Each identifier in a code fragment is mapped to the identifier at the same position
in another code fragment within a pair of code clones (refer to Figure 5). The mapping is
done based on the identifier’s position detected in previous step. Therefore, it is important
to ensure that only the clone pairs with same sequence are mapped.

If the instances of an identifier in one code fragment are being renamed to more than
one identifier names, or not all instances of an identifier is renamed, inconsistency are said
to be occurred. For each unique identifier in a code fragment, the mapping is performed
and its result is stored.

For the code fragments in a clone set, mapping is performed to all possible combi-
nation of clone pairs. Most of the clone detection tools are able to find out clone pairs
with differences in identifier names including variables, types, methods, etc but give no
information on clone history. In other words, we cannot determine a code fragment is
duplicated from which code fragment in a clone set. Therefore, we need to perform the
mapping on every possible combination of clone pairs in a clone set.

Table 2 shows one of such mapping results using the example shown in Figure 3.
All identifiers existed in code fragment 1 (line 127-139) are renamed consistently in code
fragment 2 (line 161-173) except v count and varse. There is one of the instances of
v count (highlighted in Figure 3) is left unchanged in fragment 2. On the other hand,
instances of varse (italicized in Figure 3) are changed to 2 different identifier names,
arrays and lists, while one is left unchanged. Inconsistencies are said to be occurred in
this 2 cases.

17

Table 2: Identifier Mapping Result for Clone Pair in Figure 3
Identifiers in Identifiers in
Code Fragment 1 Code Fragment 2 Occurrence
(line 127-139) (line 161-173)

malloc malloc 2

indx indx 8

o count o count 2

o name o name 1

o var o ary 2

v count a count 4
v count 1

v name a name 2

varse arrays 2
lists 1
varse 1

STORE INCR STORE INCR 1

3.3 Result Filtering

Inconsistencies detected from the identifier mapping result are not necessary the case
of unintended inconsistency resulted from programmer’s careless mistakes. In other words,
these inconsistencies are not always bugs. Therefore, they need to go through some filtering
algorithm in order to produce a list of potential bugs with less false positives. In our
approach, we use 2 metrics to serve the filtering purpose.

1. UnchangedRatio

The first metric is UnchangedRatio as proposed in [20]. It is defined as

UnchangedRatio(v) =
NumOfUnchangedID(v)

TotalNumOfID(v)

For identifier v, NumOfUnchangedID is the number of occurrences of v in code
fragment 2, f2 where its name is　 remain unchanged as compared to identifier at
the same position in code fragment 1, f1. TotalNumOfID is the total number of
occurrences of v in f1. f1 and f2 form a clone pair.

When UnchangedRatio equals to 0, it means all instances of an identifier are being
renamed. In contrast, when UnchangedRatio equals to 1, it means all instances of
an identifier are remained in the same name. It is believed that if an identifier is
renamed in most of its instances and only a few of its instances are not renamed, there

18

is high possibility that developer forgets to change them. Therefore, the smaller the
value of UnchangedRatio (except zero), the higher the possibility of the not renamed
identifier to be a bug. Inconsistencies with the value of UnchangedRatio below
the threshold that we set will be reported as bug candidate. Since the original code
fragment in a clone pair cannot be determined, UnchangedRatio has to be calculated
in both directions.

Referring to Table 2, 4 instances of v count are changed to a count in Fragment 2
while one instance is remained in the same name, result in UnchangedRatio(v count)
= 0.2. Similarly, 3 instances of varse are changed to arrays and lists while one
instance is left unchanged, result in UnchangedRatio(varse) = 0.25.

2. Conflict

UnchangedRatio does not provide any information if an identifier is changed to mul-
tiple names. Therefore, we suggest another metric called Conflict to complement
UnchangedRatio. When an identifier is changed to multiple names, Conflict is set to
true. In Table 2, varse is one of such examples. In this case, the possibility that the
instances of an identifier are changed to multiple names intentionally to implement
the functionality is high. We filter out this kind of inconsistencies even though their
UnchangedRatio are below threshold value.

19

4 Implementation of Fault Detection Tool

We have implemented a tool based on the proposed method. The system takes raw
source files as input and produces a bug candidate list displayed on a graphical interface
as output. This chapter gives the details related to our implementation.

4.1 Overview

The system is implemented using Java. Currently the system can handle programs
written in C language and Java. We have carefully modularize the system in order to
cater the future enhancement especially in adapting to different clone detection tools and
handling various programming languages.

We will explain the details of code clone detection in our current implementation and
our consideration to adapt to different clone detection tools in section 4.2. Section 4.3
explains the techniques that we used to filter the code clones detected by clone detection
tool applied in our implementation. In section 4.4, the implementation of lexical analyzer
and the consideration of handling more programming languages are presented. Following
that, we explain how we visualize the bug candidates in order to ease the bug inspection
task in section 4.5.

4.2 Code Clone Detection

Code clone detection is an important step since code clone is the initial input to our
approach. Therefore, the effectiveness of clone detection affects the result. There are
plenty of tools that available for clone detection [15][2][8]. Among them, we have chosen
CCFinder to perform the clone detection task in our approach. CCFinder is a token-
based clone detection tool which offer good scalability and execution time to cope with
large software. The comparison between CCFinder and other tools is presented in section
2.4.

In order to process the output file of CCFinder that contains the clone position in-
formation, we implemented a module called clone information processor to interpret this
information. This makes our approach having the flexibility to work with different clone
detection tools especially those are token-based. By making modification only to clone in-
formation processor module, our approach will be able to handle the output file of different
clone detection tools.

Figure 6 shows an example of CCFinder output file. The interpretation of tags used
in the output file is as below.

#begin{file description} #end{file description}
Each line within the tags indicates an input source file where each of these files
is given an unique identifier.

20

#begin{clone} #end{clone}
This portion gives the information about code clones detected in input source
files. There are 2 presentation styles which are corresponding to pair-wise and
class-wise format of CCFinder. In our implementation, we have chosen class-
wise format, same to the example shown in Figure 6. By choosing this format,
the code clones are grouped into clone set.

#begin{set} #end{set}
Each line enclosed by these tags represents a code fragment. The numbers on
the line is interpreted as

I: File ID
II: Start line

III: Start column
IV: End line
V: End column

For above example, the code fragment is in source file (0.0), begin at line 15
column 1 and end at line 21 column 32.

The clone information processor has been implemented to extract the information from
this output file. It will identify the tags and interpret the line resided in between the tags
according to the format explained above. The information is stored and lexical analyzer
will extract the code clones from source files based on this information in order to perform
the tokenization of code clones.

4.3 Code Clone Filtering

One of the factors that affects the output of CCFinder is the minimum length of code
clone. The higher the number, the less code clones will be found by CCFinder. In our
experiments, we set the minimum length of a code clone to 30 tokens. This number was
used in numerous previous researches [17][18] on CCFinder and gave positive results.

CCFinder identifies a large amount of code clones, which some of them are deemed in-
significant to our bug detection method. Therefore, it is important to filter the raw output
of CCFinder and select only good candidate clones as the input to our proposed method.
We applied the following two techniques to filter code clones detected by CCFinder and
conducted experiments (details in section 5.2) to evaluate their effectiveness.

21

#version: ccfinder 7.3.2
#format: classwise
#langspec: C
#option: −b 30
#option: −e char
#option: −k 30
#option: −r abdfikmnpstuv
#option: −c wfg
#option: −y
#begin{file description}
0.0 36 102 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\amiga_ksyms.c
0.1 520 1077 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\amiints.c
0.2 113 188 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\amisound.c
0.3 133 268 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\chipram.c
0.4 180 363 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\cia.c
0.5 1007 2361 C:\source_for_test_system\linux−2.6.6\arch\m68k\amiga\config.c
 :
 :
#end{file description}
#begin{syntax error}
#end{syntax error}
#begin{clone}
#begin{set}
0.0 15,1,6 21,32,41 8
0.0 16,1,11 22,33,46 3
 :
 :
#end{set}
#begin{set}
0.0 15,1,6 22,33,46 8
0.0 26,1,61 35,39,101 0
 :
 :
#end{set}
 :
 :
#end{clone}

Figure 6: Example of CCFinfer Output file

22

1. Removing Highly Repeated Code Sequence Clones

There is a large portion of code clones detected by CCFinder consists of consecutive
variable declarations and consecutive method invocations. These kinds of clones
are mainly due to the structure of programming language and many of them are
stereotyped code which is very stable. We filter out these kinds of clones using a
metric called RNR(S) that represent the ratio of non-repeated code sequence in clone
set S [10].

Let clone set S consists of n fragments, f1, f2, ..., fn. LOSwhole(fi) represents the
Length Of whole Sequence of fragment fi, and LOSrepeated(fi) represents the Length
Of repeated Sequence of fragment fi, RNR(S) is defined as

RNR(S) = 1 −

n∑
i=1

LOSrepeated(fi)

n∑
i=1

LOSwhole(fi)

Repeated code sequence is the repetition of its adjacent code sequence and non-
repeated code sequence is the other parts. In our experiment, we set the RNR value
to 0.5, filtering out clone set with the value less than 0.5 from the input to our
method. This is the value suggested in [10].

2. Removing Overlapping Clones

Among the clones detected by CCFinder, we discovered a lot of overlapping clones
where a portion of code fragments in a clone pair overlap each other. Overlapping
clones do not represent the nature of copy-and-paste process and most probably
created coincidently. Since our method is based on the assumption of copy-paste-
modify mechanism, overlapping clones are deemed insignificant to our method and
need to be filtered out.

4.4 Code Clone Tokenization

The lexical analyzer that is responsible to tokenize code clones is implemented using
JFLEX [11], a lexical analyzer generator. We need to prepare a lexical specification of our
target programming language in JFLEX’s specification syntax. JFLEX provides various
options in its specification syntax, including the option to incorporate with user code.
Therefore, we have good flexibility to control the behavior of generated lexical analyzer
and able to interface with other modules of our tool easily. We include a lexer specification
of Java in appendix.

A lexical specification file for JFLEX consists of three parts divided by a single line
starting with %%:

23

Figure 7: Snapshot of System’s Graphical Interface

User code
%%
Options and declarations
%%
Lexical rules

The first part contains user code that is copied verbatim into the beginning of the
source file of the generated lexical analyzer . This is the place to put package declarations
and import statements.

The second part contains options to customize the generated lexical analyzer which is
specified using JFLEX directives, declarations of lexical states and macro definitions for
use in the third section of the lexical specification file.

The third part contains a set of regular expressions and actions that are executed when
the scanner matches the associated regular expression.

4.5 Visualization of Fault Candidate

Since our proposed method will produce a list of potential bugs for inspection, it is
important to provides necessary information presented in decent way to ease the program-

24

mers carry out this job. We have built an graphical interface to browse the bug candidate
list. A screen shot of the interface is shown in Figure 7.

The top left frame of the interface is a bug candidate list which can be sorted by the
value of UnchangedRatio. One can start the inspection by looking at the most suspicious
case (i.e identifiers with small value of UnchangedRatio). When clicking on an item in bug
candidate list, the mapping result of selected identifier will be displayed on the bottom
left frame. At the same time, the 2 frames on the right will display the related source files.
Code clones where the selected identifier resided in are being highlighted in the source
files.

25

5 Case Study on Linux-2.6.6

In this section, we will describe the details of experiments that we have carried out
with the tool implemented based on the proposed method. The main purpose of the case
study is to evaluate the ability of our method to find real bugs caused by inconsistent
renaming of identifier in production systems.

We have chosen Linux version 2.6.6, which consist of 6,491 files and 4,364,540 lines of
code as our experiment subject. We chose Linux because it is a well-known large scale
production system. We can test the capability of our tool to cope with large software
system, at the same time evaluate the effectiveness of our tool. For the experiment results,
we concentrate the discussion on 2 of the largest modules of Linux, arch and drivers.

5.1 Experiment Parameters

There are several parameters that will affect the experiment results. The following
describe each of them and the value we set in our experiment.

1. Threshold Value for UnchangedRatio

As mentioned in Section 3.3, a non-zero or non-one value for UnchangedRatio indi-
cates inconsistent change of identifiers. When using this metric to narrow down the
bug candidates, we are based on the idea that“ the developer intents to changed all
instances of an identifier consistently to another name but left out some of them”.
As such, smaller value of UnchangedRatio (except zero) better reveal a potential
bug. In our experiments, we set the value of UnchangedRatio to 0.4, same to the
value used in [20].

2. Conflict Setting

We can specify the degree we tolerate inconsistency by determine how many different
names an identifier can be changed to. In our experiment, if an identifier is changed
to 2 different names or above, Conflict is set to true and it will be filtered out.　

5.2 Filtering Code Clones

Table 3 shows the difference of the number of code clones detected by CCFinder from
our test subject, Linux 2.6.6 before and after applying RNR filtering method. On the other
hand, Table 4 gives the number of clone pairs after we took out the overlapped clones. The
difference becomes obvious after we applied the RNR filtering. The filtering can be set to
on or off in the experiment. We have conducted experiments both with and without the
filtering and we found that the filtering techniques greatly reduce our investigation effort
by reducing the number of bug candidates created by insignificant clones. Therefore, we
applied these filtering techniques when running our experiment with Linux 2.6.6.

26

Table 3: Number of Code Clones in Linux 2.6.6
Module # Without # Filtered

Filtering with RNR

linux-2.6.6/arch 102,539 17,085

linux-2.6.6/drivers 159,764 44,881

Table 4: Number of Clone Pairs in Linux 2.6.6
Module Before RNR Filtering After RNR Filtering

With Without With Without
Overlapping Overlapping Overlapping Overlapping
Clone Clone Clone Clone

linux-2.6.6/arch 16,740,180 14,977,660 23,599 19,273

linux-2.6.6/drivers 8,325,367 7,888,115 60,706 56,260

5.3 Detecting Bugs

5.3.1 Bug Candidates

The number of bug candidates found in Linux 2.6.6 is shown in Table 5. We found
87 bug candidates in arch module and 120 in drivers module. If a clone pair contains a
bug candidate, we call it suspicious clone pair. Adding up the lines of code (LOC) of all
suspicious clone pairs gives total LOC of suspicious clones. Sometimes a clone pair can
contain more than 1 bug candidate. It that case, we only add once when calculating the
total LOC of suspicious clones.

In both arch and drivers modules, the total LOC of suspicious clones occupies less
than 0.1% of the total LOC. It gives a rough figure on the total number of lines that we
need to review. In reality, we might need to review more code in order to verify a bug
candidate, but it serve as a good start especially to detect bugs in a millions-line-of-code
software.

Table 5: Number of Bug Candidates in Linux 2.6.6
Module # File Total # Bug Total LOC

LOC Candi- Suspicous
date Clone

linux-2.6.6/arch 2,355 724,858 87 1,615

linux-2.6.6/drivers 2,323 2,344,594 120 3,637

27

File: Linux−2.6.6/drivers/pci/hotplug/shpchp_ctrl.c

1486: rc = p_slot−>hpc_ops−>slot_enable(p_slot);
1487:
1488: if (rc) {
1489: err("%s: Issue of Slot Enable command failed\n", __FUNCTION__);
1490: /* Done with exclusive hardware access */
1491: up(&ctrl−>crit_sect);
1492: return rc;
1493: }
1494: /* Wait for the command to complete */
1495: wait_for_ctrl_irq (ctrl);
1496:
1497: rc = p_slot−>hpc_ops−>check_cmd_status(ctrl);
1498: if (rc) {
1499: err("%s: Failed to enable slot, error code(%d)\n", __FUNCTION__, rc);
1500: /* Done with exclusive hardware access */
1501: up(&ctrl−>crit_sect);
1502: return rc;
1503: }

1563: retval = p_slot−>hpc_ops−>slot_disable(p_slot);
1564: if (retval) {
1565: err("%s: Issue of Slot Enable command failed\n", __FUNCTION__);
1566: /* Done with exclusive hardware access */
1567: up(&ctrl−>crit_sect);
1568: return retval;
1569: }
1570: /* Wait for the command to complete */
1571: wait_for_ctrl_irq (ctrl);
1572:
1573: retval = p_slot−>hpc_ops−>check_cmd_status(ctrl);
1574: if (retval) {
1575: err("%s: Failed to disable slot, error code(%d)\n", __FUNCTION__, rc);
1576: /* Done with exclusive hardware access */
1577: up(&ctrl−>crit_sect);
1578: return retval;
1579: }

should be changed to
retval

Figure 8: Bug Caused by Inconsistent Renaming of Identifier

5.3.2 Bugs Verification

One of the major tasks in our result analysis is to verify the bug candidates detected
by our tool. We have inspected the bug candidates in arch and drivers modules. Some of
the bug candidates are in high possibility. We checked them against Linux change log and
later version of Linux. As a result, we were able to verify some of them to be the genuine
bugs.

For arch module, we have verified all 87 bug candidates listed by our tool. Out of 87
bug candidates, 3 of them were rectified by Linux developers and the changes were listed
in Linux change log. We also found that 5 candidates are in high possibility to be a real
bug.

28

Table 6: Genuine Bugs Found in Linux 2.6.6
File Path File Identifier

Line

../arch/m68k/mac/iop.c 264 IOP NUM SCC

../arch/sparc/prom/memory.c 159 prom phys total

../arch/sparc64/prom/memory.c 117 prom phys total

../drivers/pci/hotplug/shpchp ctrl.c 1575 rc

Figure 8 gives an example of bug that is found in drivers module of Linux version
2.6.6. Code fragments consist of line 1486-1503 and line 1563-1579 are detected as a pair
of code clones. This clone pair could be the result of copy-and-paste process. All variables
named rc in pasted code fragment (line 1563-1579) have to be changed to retval but the
one in line 1575 was left out. In consequence, the system displays wrong error code. This
bug cannot be detected by compiler since the variable rc in pasted code fragment is still
within the valid scope, thus produce no warning or syntax error.

Table 6 gives some instances of verified bug with the file path, line number and identifier
that is renamed inconsistently.

29

6 Discussion and Related Work

6.1 Limitation of Tool

Our tool currently cannot handle gapped clone that is created when a copy-and-paste
code fragment gone through modifications such as insertion and deletion of statements.
Gapped clones should be inspected as well since they also have the possibility of contain-
ing inconsistent renaming bugs. The greatest barrier for our current implementation to
handle gapped clones is on the mapping analysis. Our method still lack of comprehensive
algorithm to correctly map the identifiers in gapped clone. This gives a space for our tool
to be improved.

6.2 Related Work

Li et al. [20] have developed a tool called CP-Miner to detect copy-and-paste related
bugs. CP-Miner uses data mining techniques to identify code clones and the bug detection
is implemented as part of the tool. Before passing to bug detection process, code clones
detected gone through a series of pruning procedures. CP-Miner has the ability to handle
clone that is not exactly the same.

Recently, Jiang et al. [12] developed a tool to detect bugs in code clones and their
surrounding code, called context. The clone detection component of the tool is based
on DECKARD [13], a clone detection tool developed by them. Bug caused by renaming
inconsistency is called a type-3 inconsistency in their work. The tool counts the number
of unique identifiers in each code fragment within a pair of clones. Different number of
unique identifiers is deemed as likely to be a bug.

30

7 Conclusion

Code cloning is a problem that arises in every software project. When a piece of code
is duplicated through copy-and-paste, the process is always followed by modifications to
pasted code. One of such modifications is to rename all instances of an identifier in pasted
code. As indicated in previous work, it is easy for developers to miss some instances and
thus introduce subtle bugs.

In this thesis, we introduced a method to detect bugs caused by inconsistent change of
identifiers. We first detect the code clones existed in software and identify the location of
identifiers in code clones. Then, the mapping of identifiers within clone pairs is performed
in order to find out renaming inconsistency of identifiers. By using 2 predefined metrics,
we filter out the detected inconsistencies which have low possibility to be a bug. Finally,
the approach gives a list of potential bugs for inspection.

We have conducted experiments using Linux version 2.6.6 in order to evaluate the
effectiveness of our proposed method. We have checked the bug candidates against Linux
change log and later version of Linux-2.6.6. As a result, we were able to discover bugs
on this system. Therefore, we believe that our tool is effective for detecting bugs in large
software systems.

In future, we would like to conduct more experiments on production software and
perform a comprehensive analysis on the results. The analysis will help us to refine the
filtering method in order to precisely filter out more false positives from bug candidate
list. Also, we would like to improve our tool to handle more clone patterns especially the
gapped clones. This will involve the refinement in mapping analysis.

31

Acknowledgments

First and foremost, I would like to thank Professor Katsuro Inoue for giving me the
opportunity to work with him. He provided advices and important direction to my thesis
work.

Special thanks to Associate Professor Makoto Matsushita and Assistant Professor Ya-
suhiro Hayase for their valuable comments and guidance especially in technical matters.

I would like to express my gratitude to all members of Department of Computer Science
for their guidance.

Thanks are also due to many friends in Department of Computer Science, especially
students in Inoue Laboratory.

32

References

[1] B.S. Baker,“ A Program for Identifying Duplicated Code,”Proceedings of the 24th
Symposium of Computer Science and Statistics, pp. 49-57, March 1992.

[2] B.S. Baker,“On Finding Duplication and Near-Duplication in Large Software Sys-
tems,”Proceedings of the Second Working Conference on Reverse Engineering, pp.
86-95, July 1995.

[3] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier,“ Clone Detection Using Ab-
stract Syntax Trees,”Proceedings of the IEEE International Conference on Software
Maintenance, pp. 368-377, March 1998.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo, “ Comparison and
Evaluation of Clone Detection Tools,”IEEE Transactions on Software Engineering,
vol. 33, no. 9, pp. 577-591, September 2007.

[5] E. Burd, and J. Bailey,“Evaluating Clone Detection Tools for Use during Preventative
Maintenance,”Proceedings of the second IEEE International Workshop on Source
Code Analysis and Manipulation, pp. 36-43, October 2002.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,“ An Empirical Study of
Operating Systems Errors,”Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pp. 73-88, 2001.

[7] J.R. Cordy,“ Comprehending Reality - Practical Challenges to Software Mainte-
nance Automation,”Proceedings of IEEE 11th International Workshop on Program
Comprehension, pp. 196-206, May 2003.

[8] S. Ducasse, M. Reiger, and S. Demeyer,“ A Language Independent Approach for
Detecting Duplicated Code,”Proceedings of the IEEE International Conference on
Software Maintenance, pp. 109-118, August 1999.

[9] R. Geiger, Evolution Impact of Code Clones: Identification of Structural and Change
Smells based on Code Clones, Diploma thesis, University of Zurich, 2005.

[10] Y. Higo, T. Kamiya, S. Kusumoto and K. Inoue,“Mehtod and Implementation for In-
vestigating Code Clones in a Software System,”Information and Software Technology,
vol. 49, pp. 985-998, September 2007.

[11] G. Klein, JFlex User ’s Manual, November 2004.
Available at http://jflex.de/manual.html.

33

[12] L. Jiang, Z. Su, and E.Chiu,“ Context-Based Detection of Clone-Related Bugs,”
Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium of the Foundations of Software Engineering, pp.
55-64, September 2007.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,“DECKARD: Scalable and Accurate
Tree-based Detection of Code Clones,”Proceedings of 29th International Conference
on Software Engineering, pp. 96-105, May 2007.

[14] P. Jablonski, and D. Hou,“CReN: A Tool for Tracking Copy-and-Paste Code Clones
and Renaming Identifiers Consistently in the IDE,”Proceedings of the OOPSLA Work-
shop on Eclipse Technology Exchange, pp. 16-20, October 2007.

[15] T. Kamiya, S. Kusumoto, and K. Inoue,“CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale Source Code,”IEEE Transactions on
Software Engineering, vol. 28, no. 7, pp. 654-670, July 2002.

[16] C. Kapser and M.W. Godfrey,“ Toward a Taxonomy of Clones in Source Code: A
Case Study,”Evolution of Large-scale Industrial Software Applications, September
2003.

[17] C. Kapser, and M. Godfrey,“ Supporting the Analysis of Clones in Software Sys-
tems: A Case Study,”Journal of Software Maintenance and Evolution: Research and
Practice, Vol.18, pp. 61-82, 2006.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy,“ An Empirical Study of Code
Clone Genealogies,”Proceedings of the European Software Engineering Conference
and ACM SIGSOFT Symposium Foundation of Software Engineering, pp. 187-196,
Sept. 2005.

[19] J. Krinke,“A Study of Consistent and Inconsistent Changes to Code Clones,”Pro-
ceedings of the 14th Working Conference on Reverse Engineering, pp. 170-178, July
2007.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou,“CP-Miner: Finding Copy-Paste and Related
Bugs in Large-Scale Software Code,”IEEE Transactions on Software Engineering, vol.
32, no. 3, pp. 176-192, March 2006.

[21] M. Rieger, Effective Clone Detection Without Language Barriers, PhD thesis, Uni-
versity of Berne, 2005.

34

Appendix

A. JFLEX Specification for Java

35

JFLEX Specification for Java

/* Java language lexer specification */

import java.util.Collections;
import java.util.ArrayList;
import java.util.List;
import java.util.LinkedList;

%%

%public
%class JavaScanner
%function scanCode
%type List
%eofclose

%unicode

%line
%column

%init{

this.tokenList = new LinkedList();
this.identifierPosList = new ArrayList<Integer> ();

%init}

%{

StringBuffer string = new StringBuffer();
private List tokenList;
private List<Integer> identifierPosList;

public List<Integer> getIdentifierPosList(){

return Collections.unmodifiableList(identifierPosList);
}

/**
* assumes correct representation of a long value for
* specified radix in scanner buffer from <code>start</code>
* to <code>end</code>
*/
private long parseLong(int start, int end, int radix) {
long result = 0;
long digit;

for (int i = start; i < end; i++) {
digit = Character.digit(yycharat(i),radix);
result*= radix;
result+= digit;

}

return result;
}

%}

/* main character classes */
LineTerminator = \r|\n|\r\n
InputCharacter = [^\r\n]

WhiteSpace = {LineTerminator} | [\t\f]

/* comments */
Comment = {TraditionalComment} | {EndOfLineComment} |

{DocumentationComment}

TraditionalComment = "/*" [^*] ~"*/" | "/*" "*"+ "/"
EndOfLineComment = "//" {InputCharacter}* {LineTerminator}?
DocumentationComment = "/*" "*"+ [^/*] ~"*/"

/* identifiers */
Identifier = [:jletter:][:jletterdigit:]*

36

/* integer literals */
DecIntegerLiteral = 0 | [1-9][0-9]*
DecLongLiteral = {DecIntegerLiteral} [lL]

HexIntegerLiteral = 0 [xX] 0* {HexDigit} {1,8}
HexLongLiteral = 0 [xX] 0* {HexDigit} {1,16} [lL]
HexDigit = [0-9a-fA-F]

OctIntegerLiteral = 0+ [1-3]? {OctDigit} {1,15}
OctLongLiteral = 0+ 1? {OctDigit} {1,21} [lL]
OctDigit = [0-7]

/* floating point literals */
FloatLiteral = ({FLit1}|{FLit2}|{FLit3}) {Exponent}? [fF]
DoubleLiteral = ({FLit1}|{FLit2}|{FLit3}) {Exponent}?

FLit1 = [0-9]+ \. [0-9]*
FLit2 = \. [0-9]+
FLit3 = [0-9]+
Exponent = [eE] [+-]? [0-9]+

/* string and character literals */
StringCharacter = [^\r\n\"\\]
SingleCharacter = [^\r\n\’\\]

%state STRING, CHARLITERAL

%%

<YYINITIAL> {

/* keywords */
"abstract" { tokenList.add("ABSTRACT"); }
"assert" { tokenList.add("ASSERT"); }
"boolean" { tokenList.add("BOOLEAN"); }
"break" { tokenList.add("BREAK"); }
"byte" { tokenList.add("BYTE"); }
"case" { tokenList.add("CASE"); }
"catch" { tokenList.add("CATCH"); }
"char" { tokenList.add("CHAR"); }
"class" { tokenList.add("CLASS"); }
"const" { tokenList.add("CONST"); }
"continue" { tokenList.add("CONTINUE"); }
"default" { tokenList.add("DEFAULT"); }
"do" { tokenList.add("DO"); }
"double" { tokenList.add("DOUBLE"); }
"else" { tokenList.add("ELSE"); }
"extends" { tokenList.add("EXTENDS"); }
"final" { tokenList.add("FINAL"); }
"finally" { tokenList.add("FINALLY"); }
"float" { tokenList.add("FLOAT"); }
"for" { tokenList.add("FOR"); }
"goto" { tokenList.add("GOTO"); }
"if" { tokenList.add("IF"); }
"implements" { tokenList.add("IMPLEMENTS"); }
"import" { tokenList.add("IMPORT"); }
"instanceof" { tokenList.add("INSTANCEOF"); }
"int" { tokenList.add("INT"); }
"interface" { tokenList.add("INTERFACE"); }
"long" { tokenList.add("LONG"); }
"native" { tokenList.add("NATIVE"); }
"new" { tokenList.add("NEW"); }
"package" { tokenList.add("PACKAGE"); }
"private" { tokenList.add("PRIVATE"); }
"protected" { tokenList.add("PROTECTED"); }
"public" { tokenList.add("PUBLIC"); }
"return" { tokenList.add("RETURN"); }
"short" { tokenList.add("SHORT"); }
"static" { tokenList.add("STATIC"); }

37

"strictfp" { tokenList.add("STRICTFP"); }
"super" { tokenList.add("SUPER"); }
"switch" { tokenList.add("SWITCH"); }
"synchronized" { tokenList.add("SYNCHRONIZED"); }
"this" { tokenList.add("THIS"); }
"throw" { tokenList.add("THROW"); }
"throws" { tokenList.add("THROWS"); }
"transient" { tokenList.add("TRANSIENT"); }
"try" { tokenList.add("TRY"); }
"void" { tokenList.add("VOID"); }
"volatile" { tokenList.add("VOLATILE"); }
"while" { tokenList.add("WHILE"); }

/* boolean literals */
"true" { tokenList.add("TRUE"); }
"false" { tokenList.add("FALSE"); }

/* null literal */
"null" { tokenList.add("NULL"); }

/* separators */
"(" { tokenList.add("("); }
")" { tokenList.add(")"); }
"{" { tokenList.add("{"); }
"}" { tokenList.add("}"); }
"[" { tokenList.add("["); }
"]" { tokenList.add("]"); }
";" { tokenList.add(";"); }
"," { tokenList.add(","); }
"." { tokenList.add("."); }

/* operators */
"=" { tokenList.add("="); }
">" { tokenList.add(">"); }
"<" { tokenList.add("<"); }
"!" { tokenList.add("!"); }
"~" { tokenList.add("~"); }
"?" { tokenList.add("?"); }
":" { tokenList.add(":"); }
"==" { tokenList.add("=="); }
"<=" { tokenList.add("<="); }
">=" { tokenList.add(">="); }
"!=" { tokenList.add("!="); }
"&&" { tokenList.add("&&"); }
"||" { tokenList.add("||"); }
"++" { tokenList.add("++"); }
"--" { tokenList.add("--"); }
"+" { tokenList.add("+"); }
"-" { tokenList.add("-"); }
"*" { tokenList.add("*"); }
"/" { tokenList.add("/"); }
"&" { tokenList.add("&"); }
"|" { tokenList.add("|"); }
"^" { tokenList.add("^"); }
"%" { tokenList.add("%"); }
"<<" { tokenList.add("<<"); }
">>" { tokenList.add(">>"); }
">>>" { tokenList.add(">>>"); }
"+=" { tokenList.add("+="); }
"-=" { tokenList.add("-="); }
"*=" { tokenList.add("*="); }
"/=" { tokenList.add("/="); }
"&=" { tokenList.add("&="); }
"|=" { tokenList.add("|="); }
"^=" { tokenList.add("^="); }
"%=" { tokenList.add("%="); }
"<<=" { tokenList.add("<<="); }

38

">>=" { tokenList.add(">>="); }
">>>=" { tokenList.add(">>>="); }

/* string literal */
\" { yybegin(STRING); string.setLength(0); }

/* character literal */
\’ { yybegin(CHARLITERAL); }

/* numeric literals */

{DecIntegerLiteral} { tokenList.add(new Integer(yytext())); }
{DecLongLiteral} { tokenList.add(

new Long(yytext().substring(0,yylength()-1))); }

{HexIntegerLiteral} { tokenList.add(
new Integer((int) parseLong(2, yylength(), 16))); }

{HexLongLiteral} { tokenList.add(
new Long(parseLong(2, yylength()-1, 16))); }

{OctIntegerLiteral} { tokenList.add(
new Integer((int) parseLong(0, yylength(), 8))); }

{OctLongLiteral} { tokenList.add(
new Long(parseLong(0, yylength()-1, 8))); }

{FloatLiteral} { tokenList.add(
new Float(yytext().substring(0,yylength()-1))); }

{DoubleLiteral} { tokenList.add(new Double(yytext())); }
{DoubleLiteral}[dD] { tokenList.add(

new Double(yytext().substring(0,yylength()-1))); }

/* comments */
{Comment} { /* ignore */ }

/* whitespace */
{WhiteSpace} { /* ignore */ }

/* identifiers */
{Identifier} { tokenList.add(yytext());

identifierPosList.add(tokenList.size()-1); }
}

<STRING> {
\" { yybegin(YYINITIAL);

tokenList.add(string.toString()); }

{StringCharacter}+ { string.append(yytext()); }

/* escape sequences */
"\\b" { string.append(’\b’); }
"\\t" { string.append(’\t’); }
"\\n" { string.append(’\n’); }
"\\f" { string.append(’\f’); }
"\\r" { string.append(’\r’); }
"\\\"" { string.append(’\"’); }
"\\’" { string.append(’\’’); }
"\\\\" { string.append(’\\’); }
\\[0-3]?{OctDigit}?{OctDigit} { char val = (char) Integer.parseInt(

yytext().substring(1),8);
string.append(val); }

/* error cases */
\\. { throw new RuntimeException(

"Illegal escape sequence \""+yytext()+"\""); }
{LineTerminator} { throw new RuntimeException(

"Unterminated string at end of line"); }
}

<CHARLITERAL> {
{SingleCharacter}\’ { yybegin(YYINITIAL);

tokenList.add(new Character(yytext().charAt(0))); }

39

/* escape sequences */
"\\b"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\b’));}
"\\t"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\t’));}
"\\n"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\n’));}
"\\f"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\f’));}
"\\r"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\r’));}
"\\\""\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\"’));}
"\\’"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\’’));}
"\\\\"\’ { yybegin(YYINITIAL);

tokenList.add(new Character(’\\’));}
\\[0-3]?{OctDigit}?{OctDigit}\’ { yybegin(YYINITIAL);

int val = Integer.parseInt(
yytext().substring(1,yylength()-1),8);

tokenList.add(new Character((char)val)); }

/* error cases */
\\. { throw new RuntimeException(

"Illegal escape sequence \""+yytext()+"\""); }
{LineTerminator} { throw new RuntimeException(

"Unterminated character literal at end of line"); }
}

/* error fallback */
.|\n { throw new RuntimeException(

"Illegal character \""+yytext()+
"\" at line "+yyline+", column "+yycolumn); }

<<EOF>> { return tokenList;}

40

