
Large-scale Analysis of Software Reuse
for Code and License Changes

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2019

Yuhao WU

Abstract

Code reuse is a very common practice in software engineering. When per-
formed in a correct way, code reuse can help developers create software
products with higher quality more efficiently. Although code reuse is ben-
eficial in many aspects, there are also several issues that we need to take
special care of. One important aspect is software license, without which
source code cannot be reused legally. Another aspect is the efficiency or
barriers during the process code reuse.

In the first part of this dissertation, we deal with the issue of software
license. Software license is a written text that grants the permissions of
reusing and redistributing the software to its users. Removing or modifying
the license statement by re-distributors will result in the inconsistency of
license with its ancestor, and may potentially cause license infringement.
However, in our study we have encountered cases where multiple source files
that have the same source code but are under different licenses. Therefore,
we describe and categorize different types of license inconsistencies and
propose a method to detect them. Then we applied this method to Debian
7.5 and a collection of 10,514 Java projects on GitHub and present the
license inconsistency cases found in these systems. With a manual analysis,
we summarized various reasons behind these license inconsistency cases,
some of which imply potential license infringement and require attention
from the developers. This analysis also exposes the difficulty to discover
license infringements, highlighting the usefulness of finding and maintaining
source code provenance.

In the second part of this dissertation, we deal with the barriers during
the process of code reuse. Although code reuse is a common practice, the
process is not fully studied: how often and why is the source code changed
during code reuse, what hinders code reuse and how can we improve it? In
order to address these issues, we conduct an empirical study on code reuse
from Stack Overflow, a question and answer (Q&A) platform for software
developers. In this study, we first conduct an exploratory study on 289
files from 182 open source projects, which contain source code that has an
explicit reference to a Stack Overflow post. We found that code modifi-
cation during code reuse is a frequent action. Meanwhile, developers also

iii

write (re-implement) source code from scratch based on the idea from Stack
Overflow. To further understand the barriers of reusing code and to ob-
tain suggestions for improving the code reuse process on Q&A platforms,
we conducted a survey with 453 open source developers who are also on
Stack Overflow. We found that the top 3 barriers that make it difficult for
developers to reuse code from Stack Overflow are: (1) too much code mod-
ification required to fit in their projects, (2) incomprehensive code, and (3)
low code quality. We summarized and analyzed all survey responses and we
identified that developers suggest improvements for future Q&A platforms
along the following dimensions: code quality, information enhancement &
management, data organization, license, and the human factor. Our find-
ings can be used as a roadmap for researchers and developers to improve
code reuse.

iv

List of Publications

Major Publications

1. Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, Katsuro Inoue. “How
Do Developers Utilize Source Code from Stack Overflow?” The 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ES-
EC/FSE 2018), Journal-First, Lake Buena Vista, Florida, November
2018.

2. Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, Katsuro Inoue. “How
Do Developers Utilize Source Code from Stack Overflow?” Empirical
Software Engineering Journal, 2018 (to appear).

3. Yuhao Wu, Yuki Manabe, Daniel M. German, Katsuro Inoue. “How
Are Developers Treating License Inconsistency Issues? A Case Study
on License Inconsistency Evolution in FOSS Projects.” The 13th
International Conference on Open Source Systems (OSS 2017), pp.
69-79, Buenos Aires, Argentina, May 2017.

4. Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, Kat-
suro Inoue. “Analysis of License Inconsistency in Large Collections
of Open Source Projects.” Empirical Software Engineering Journal,
Vol.22, No.3, pp.1194-1222, 2017.

5. Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, Kat-
suro Inoue. “A Method to Detect License Inconsistencies in Large-
Scale Open Source Projects.” in Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR 2015), pp.324-333,
Florence, Italy, May 2015.

Related Publications

1. Anfernee Goon, Yuhao Wu, Makoto Matsushita, Katsuro Inoue. “Evo-
lution of Code Clone Ratios throughout Development History of Open-

v

Source C and C++.” 11th International Workshop on Software Clones
(IWSC 2017), pp. 47-53, Klagenfurt, Austria, February 2017.

2. Anfernee Goon, Yuhao Wu, Makoto Matsushita, Katsuro Inoue. “Anal-
ysis of Code Clone Ratios over Version Evolution in Open-Source
Projects Written in C and C++.” Software Engineer Symposium
(2016), pp. 255-256, 2016.

3. Buford Edwards III, Yuhao Wu, Makoto Matsushita, Katsuro Inoue.
“Estimating Code Size After a Complete Code-Clone Merge.” Soft-
ware Engineering Research Report (SE), 2016(3), pp. 1-8.

vi

Acknowledgement

First of all, I am deeply grateful to my supervisor: Professor Katsuro Inoue,
for the continuous support of my Ph.D study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me in
all the time of research and writing of this dissertation. I could not have
imagined having a better advisor and mentor for my Ph.D study.

I would like to thank my co-supervisors: Professor Daniel M. German
(affiliated with University of Victoria) and Assistant Professor Yuki Manabe
(Kumamoto University). They gave me a lot of motivating research ideas
and guided me through the difficulties during the research.

Besides my supervisors, I would like to thank the rest of my thesis
committee: Professor Shinji Kusumoto and Professor Fumihiko Ino, for
their insightful comments and encouragement.

My sincere thanks goes to my collaborators: Dr. Shaowei Wang (Queen’s
University), Assistant Professor Cor-Paul Bezemer (University of Alberta)
and Professor Ahmed E. Hassan (Queen’s University), for their kind sup-
port during my internship in Queen’s University. They gave me a lot
of valuable comments and suggestions on my research and paper writing,
which I believe will definitely be very helpful during the rest of my life.

I am grateful to Dr. Akira Mori, who provided me with a lot of won-
derful research ideas and enlightening comments during my internship in
National Institute of Advanced Industrial Science and Technology (AIST).

I would like to thank Professor Makoto Matsushita, Assistant Profes-
sor Tetsuya Kanda, Professor Takashi Ishio (Nara Institute of Science and
Technology), Assistant Professor Raula Gaikovina Kula (Nara Institute of
Science and Technology), Assistant Professor Eunjong Choi (Nara Institute
of Science and Technology), Professor Norihiro Yoshida (Nagoya Univer-
sity), Dr. Xin Yang, Professor Ali Ouni (University of Quebec), Professor
Coen De Roover (Vrije Universiteit Brussel), Dr. Leon Moonen (Simula)
and Ms. Kate Stewart (The Linux Foundation), for their support and ad-
vices.

I would like to thank all the members in my laboratory for creating such
a wonderful environment for studying and researching. My special thanks

vii

goes to our lab secretary: Ms. Mizuho Karube, for her continuous support
and encouragement in the past 5 years.

I would also like to thank all the participants in our web survey of our
study, for providing plentiful valuable responses.

Last but not least, I would like to thank my family members for sup-
porting me spiritually throughout writing this dissertation and my life in
general.

viii

Contents

1 Introduction 1
1.1 Software License . 1

1.1.1 Free and Open Source License 2
1.1.2 License Inconsistency 2
1.1.3 A Motivating Example 3

1.2 Software Reuse . 4
1.2.1 Question and Answer Platforms 4
1.2.2 A Motivating Example 5

1.3 Contributions of the Dissertation 5
1.3.1 Software License . 5
1.3.2 Source Code . 6

1.4 Overview of the Dissertation 6

2 Analysis of License Inconsistency in Large Collections of
Open Source Projects 9
2.1 Introduction . 9
2.2 License Inconsistencies . 11

2.2.1 Definition . 13
2.2.2 Example . 13
2.2.3 Categorization . 14

2.3 Method to Detect License Inconsistencies 15
2.3.1 License Inconsistency Metrics 17
2.3.2 Method of Detecting License Inconsistencies 18
2.3.3 Example . 18

2.4 Empirical Study . 20
2.4.1 Empirical Study on Debian 7.5 21
2.4.2 Empirical Study on Java Projects 28
2.4.3 Discussion of the Results 32
2.4.4 Answering RQs . 33

2.5 Discussion . 34
2.5.1 Improvement of the Method 34
2.5.2 What Appears to Be a Copy Might Not Be a Copy . 35

ix

2.5.3 Changes Were Made Under the Permission of Copy-
right Owner . 36

2.5.4 An Attempt in Measuring the Recall 36
2.6 Threats to Validity . 37
2.7 Related Work . 38
2.8 Conclusion of This Chapter 39

3 How Do Developers Utilize Source Code from Stack Over-
flow? 41
3.1 Introduction . 41
3.2 Background & Related Work 43

3.2.1 Leveraging Knowledge from Stack Overflow 43
3.2.2 Understanding the Quality of Posts on Stack Overflow 44
3.2.3 Source Code Reuse from Stack Overflow 45
3.2.4 Code Licensing on Stack Overflow 46

3.3 Research Questions & Data Collection 47
3.3.1 Research Questions 47
3.3.2 Data Collection . 48

3.4 An Exploratory Study of Source Code Reuse from Stack
Overflow in Open-Source Projects 51
3.4.1 RQ1: To What Extent Do Developers Need to Mod-

ify Source Code From Stack Overflow in Order to
Make It Work in Their Own Projects 51

3.4.2 RQ2: From Which Part of the Stack Overflow Post
Does the Reused Source Code Come? 59

3.5 A Survey on Code Reuse from Stack Overflow 62
3.5.1 RQ3: What Are the Preferences of Developers When

It Comes to Reusing Code? 63
3.5.2 RQ4: Is Code License a Barrier for Code Reuse for

Developers? . 65
3.6 A Roadmap for Next-Generation Q&A platforms 66

3.6.1 Suggestions on Code Quality 69
3.6.2 Suggestions on Information Enhancement & Manage-

ment . 72
3.6.3 Suggestions on Data Organization 74
3.6.4 Suggestions on Code License 76
3.6.5 Suggestions on the Human Factor 78
3.6.6 Other Suggestions 80

3.7 Threats to Validity . 80
3.8 Conclusion of This Chapter 82

4 Conclusion and Future Work 85
4.1 Conclusion . 85
4.2 Future Directions . 86

x

List of Figures

2.1 Hierarchy of a project and the license of each source file.
Note that the foo.c file in Pkg1 was imported to Pkg2 with
the license changed to GPL-3.0+; The foo.c in Pkg3 contains
totally different source code than the one in Pkg1, and was
imported to Pkg4 with its name changed to foo100.c and
license removed. 19

2.2 Hierarchy of the grouped files. 19

3.1 An example of a question and its accepted answer on Stack
Overflow. 45

3.2 An overview of our data collection of the exploratory study. 49
3.3 The distribution of the studied Stack Overflow links over the

five programming languages. 50
3.4 Distribution of the software engineering experience of the

participants in years. 50
3.5 Distribution of the types of projects that the participants

are working on. 51
3.6 The distribution of each type of source code utilization for

each of the studied programming languages. 54
3.7 Comparison of frequency of reusing and reimplementing source

code. 63
3.8 Participants’ awareness of the licenses of Q&A platforms. . 65
3.9 Participants’ opinion about license compatibility between

Q&A platforms and their projects. 65
3.10 Importance of having more information on license. 66

xi

xii

List of Tables

2.1 Strategies to decide whether a certain type of license incon-
sistency exists in a group. 17

2.2 License list of the selected files from the example project. . 20
2.3 List of the license inconsistency metrics for each file group

in the example project. 20
2.4 Main characteristics of Debian 7.5. 21
2.5 Breakdown of number of groups and files for each type in

analyzing Debian 7.5. 21
2.6 Partial list of the license inconsistency metrics for each file

group in detecting Debian 7.5. 22
2.7 Number of different types of license inconsistencies and their

proportion in Debian 7.5. Note that one group may contain
more than one inconsistency types, so that the total percent-
age can exceed 100%. 22

2.8 Example of LAR inconsistency, in getopt.c 22
2.9 License list of group 6645 of obstack.c where LUD exists. . . 24
2.10 License list of group 52662 of getopt.c where LC and LAR exist. 24
2.11 The count and percentage of each category for the 25 inves-

tigated license inconsistency cases. 26
2.12 Main characteristics of Java projects cloned from GitHub. . 29
2.13 Number of groups and files in each group in analyzing Java

projects. 29
2.14 Number of different types of license inconsistencies and their

proportion in Java projects. 29
2.15 The count and percentage of each category for the 17 inves-

tigated license inconsistency cases in the Java projects. . . . 30
2.16 Comparison of two methods on Debian 7.5. 35
2.17 Comparison of two methods on Java projects. 35

3.1 The identified types of source code utilization from Stack
Overflow. 53

3.2 Where does the reused source code come from? 59

xiii

3.3 Reasons for choosing reimplementing over reusing source code.
(Multi-selection allowed, hence the sum of the percentages
is larger than 100%.) . 64

3.4 The categorization of code quality suggestions — 64 out of
183 (35.0%). 68

3.5 The categorization of information enhancement & manage-
ment suggestions — 43 out of 183 (23.5%). 71

3.6 The categorization of data organization suggestions — 21
out of 183 (11.5%). 73

3.7 The categorization of code license suggestions — 23 out of
183 (12.6%). 75

3.8 The categorization of human factor suggestions — 19 out of
183 (10.4%). 77

3.9 The categorization of other suggestions — 13 out of 183 (7.0%). 79

xiv

Chapter 1

Introduction

Software is playing a more and more important role nowadays. It supports
our daily life in all aspects: mobile phones, medical devices and aircrafts all
rely on software. However, many incidents have proved that, software errors
can result into financial loss or even people’s death [88]. There are several
approaches to mitigate the influence of software errors. Among them, code
reuse is proved to be an efficient and effective way to reduce software errors
while improving code quality [14, 17, 51, 61, 87]. On one hand, code reuse
saves the development time comparing to writing the software from scratch,
reducing the cost for the company [8]. On the other hand, the reused source
code is often widely tested by many other developers, thus resulting in a
software with higher quality [14, 49].

Despite the benefits, code reuse also comes with many risks: reusing
source code with an incompatible license may result into license violation;
integrating source code that you do not understand may reduce the read-
ability and maintainability of the target software. In this dissertation, we
deal with software license issues and the barriers during code reuse. We
introduce each of them in the following sections respectively.

1.1 Software License

Software licensing and licensing of digital information in general create a
regime of information governance for the Internet and beyond [58]. Gener-
ally speaking, there are two types of software licenses: free and open source
software (FOSS) license and closed source license. FOSS licensing schemes
permit users to access both the source code and object code of a particu-
lar computer program. In contrast, conventional or closed source licensing
schemes typically permit access only to the object code, preventing ma-
nipulations of the underlying program itself. Since our research addresses
issues of the source code level reuse, we will focus on FOSS license in this
dissertation.

1

1.1.1 Free and Open Source License

With the growth of free and open source software, code reuse from the
FOSS software is playing a more and more important role in project de-
velopment [81]. FOSS license allows the software to be freely used (as
in freedom), modified, and redistributed (in modified or unmodified form)
by anyone, as long as the conditions of its license are satisfied. Broadly
speaking, there are two types of FOSS licenses: restrictive and permissive
licenses. Restrictive licenses require the derivative work to be under the
same license as the work they based on, while permissive licenses allow
reusers to redistribute the derivative work under other licenses that the
reusers choose [80].

For example, GPL is a typical restrictive license. Under Section 5 of
GPL-3.0, it includes such statement: “You must license the entire work,
as a whole, under this License to anyone who comes into possession of a
copy” [26]. Other restrictive licenses include: LGPL, AGPL, etc. On the
other hand, BSD is a typical permissive license. For example, BSD-2-Clause
has no restrictions on what license the derivative work should use; the only
requirements are: 1) copyright notice been included in the source code,
and 2) binary form reproducing the copyright notice [45]. Other permissive
licenses include: MIT, Apache-2.0, etc.

Although FOSS software can usually be reused without any cost, de-
velopers should be very careful about the terms included in the license,
otherwise license issues may occur.

License compatibility is one the issues where source code/packages un-
der different licenses are mixed together while the license terms conflict with
each other, making them incompatible. German et al. [33] have proposed
a method to help understand licensing issues and performed an empiri-
cal study which showed the existence of license incompatibilities issues in
Fedora-12.

Another license issue which lacks the attention from researchers is the
license inconsistency issue. We discuss this issue in the following section.

1.1.2 License Inconsistency

In our research, license inconsistency is defined as: two source files with
same source code but having different license statements. Note that license
inconsistency is different from license incompatibility. License incompatibil-
ity is the problem that two standalone software pieces cannot be integrated
together because of license terms confict with each other; while license in-
consistency is the situation that two source files having the same source
code, but are with different licenses. License inconsistency can occur when
a reuser copy and paste the file while modifying the license of the reused file.
If the modification is not under the permission of the copyright owner, then

2

such reuse will be at the risk of license violation. License violation in indus-
try can bring large amount of damage for a company. For example, in the
legal dispute of Oracle v. Google, Oracle claimed for a penalty $8.8 billion
from Google [107]. On the other hand, the open source communities usually
take a milder attitude. For example, the Free Software Foundation claims
that they do not seek monetary damages when the license is violated [25].
However, as a developer or a company, we should not assume that other
developers do not seek for monetary damage and we should always be sure
that we do not violate the license. Note that, license inconsistency does not
always cause license violation issues, but it is an indication of a bad smell
in licensing. The goal of this research is not to eliminate all of the license
inconsistencies. Instead, we provide developers with a tool to help review
the license inconsistency issues inside their projects to avoid potential legal
disputes. We introduce an motivating example of license inconsistency in
the next section.

1.1.3 A Motivating Example

In the Debian 7.5 Linux distribution, we observed a file named obstack.c in
two packages, dpkg and anubis. These two files are identical to each other
except for their license statements. For this reason we assume that these
two files share the same provenance.

In the package dpkg, the license of this file is GPL-2.0+:

[...]
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.
[...]

While in the package anubis, the license is GPL-3.0+:

[...]
This program is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any
later version.
[...]

As we can see, the licenses of the two files are different: GPL-2.0+
and GPL-3.0+. The first file (GPL-2.0+) can be combined with software
under the GPL-2.0, while the second (GPL-3.0+) cannot (the GPL-2.0 is
incompatible with the GPL-3.0). Based on our definition, this is a case of
license inconsistency. If this license inconsistency was caused by the reuser

3

modifying the license without obtaining the permission from the original
author, then it indicates potential license violation issues.

We will discuss this issue in details in Chapter 2.

1.2 Software Reuse

Software reuse is an activity based on creating software systems from ex-
isting software, rather than building it from scratch [36, 51, 87]. Software
reuse has a long history and has been proven to be an effective way to
reduce the cost in software development [14, 17, 61]. Jones [46] generalized
4 types of software reuses: i) data reuse ii) architecture reuse iii) design
reuse iv) code reuse and v) module reuse. Our study falls into the category
of code reuse. Among the sources of code reuse, Q&A platforms serve as
an important code base for developers to look for source code and solutions
to their programming tasks.

1.2.1 Question and Answer Platforms

A question and answer (Q&A) platform is a type of crowdsourcing, where
developers gather and share their questions and solutions to their program-
ming issues. Some popular Q&A platforms include Quora, Yahoo Answers,
Stack Overflow etc. Among them, Stack Overflow is the de facto platform
for developers while others are for general public. Crowdsourcing is a form
of collective intelligence, the general idea being that information process-
ing can emerge from the actions of groups of individuals. In recent years,
several collective intelligence approaches have been adopted in software de-
velopment [54]. Latoza and van der Hoek [54] generalized crowdsourcing
into two models: one is peer production (e.g., open source, Q&A platforms);
the other one is competition (e.g., TopCoder). Since the context of this dis-
sertation is code reuse, and the competition model has no clear path of
code reuse (i.e., source and destination), we will focus on Q&A platforms.

These platforms provides a large knowledge/code base for developers,
which attracts quite a few numbers of studies. Several studies focused on
leveraging the knowledge from the Q&A platforms for software engineering
tasks such as documentation generation [89, 94, 108], bug fixing [31] and
API call extraction [11]. Other studies proposed approaches to enhance
code reuse from these Q&A platforms [66–68, 72].

Although these studies provided approaches/tools to enhance the reuse
of discussions/code from Q&A platforms, it is not clear how exactly these
source code were integrated into real-world projects. In other words, the
process of code reuse is not fully studied, thus we aim to investigate how
developers reuse source code from Q&A platforms. If we understand the
barriers that prevent developers from reusing source code from Q&A plat-

4

forms efficiently, we would be able to find out solutions to improve the
current reuse process. A motivating example is shown in the next section.

1.2.2 A Motivating Example

In the example shown in Listing 1.1 and 1.2, the developer copied three
lines of source code in the accepted answer from the Stack Overflow post
and renamed the variable from hr, min, and sec to hours, minutes, and
seconds, respectively. Developers are making modifications which does
not affect the funcionality of the source code, i.e., cosmetic modifications.
We want to understand whether developers are suffering from such mod-
ifications during the code reuse. Futhermore, we would like to generalize
different types of code reuses, and investigate more barriers that the devel-
opers are facing. Details of this study will be explained in Chapter 3.

Listing 1.1: Source snippet from the project.1

1 hours = TimeUnit.MILLISECONDS
2 .toHours(elapsedTimeMilliseconds);
3 minutes = TimeUnit.MILLISECONDS
4 .toMinutes(elapsedTimeMilliseconds
5 - TimeUnit.HOURS.toMillis(hours));
6 seconds = TimeUnit.MILLISECONDS
7 .toSeconds(elapsedTimeMilliseconds
8 - TimeUnit.HOURS.toMillis(hours)
9 - TimeUnit.MINUTES.toMillis(minutes));

1.3 Contributions of the Dissertation

The contributions of this dissertation are two-fold: one is regarding the
evolution of software license during code reuse; the other one is regarding
the evolution of the source code itself during code reuse.

1.3.1 Software License

The first part of our contribution is regarding the license inconsistency
issues. License inconsistency issue is a type of software license issues that
is not fully investigated in previous studies. The contribution of our work
are:

• We describe and categorize different types of license inconsistencies.

1https://goo.gl/9ouSz1
2https://goo.gl/74oVBu

5

https://goo.gl/9ouSz1
https://goo.gl/74oVBu

Listing 1.2: Source snippet from the Stack Overflow answer.2

1
2 final long hr = TimeUnit.MILLISECONDS.toHours(l);
3 final long min = TimeUnit.MILLISECONDS
4 .toMinutes(l - TimeUnit.HOURS.toMillis(hr));
5 final long sec = TimeUnit.MILLISECONDS
6 .toSeconds(l - TimeUnit.HOURS.toMillis(hr)
7 - TimeUnit.MINUTES.toMillis(min));

• Based on existing tools for license identification and clone detection,
we have developed a method to detect license inconsistencies. We
perform an empirical study with this method using two sets of FOSS
projects. This study reveals that license inconsistencies exist. It also
proved the feasibility of our method.

• We perform a manual analysis of some license inconsistency cases
to understand the reasons behind them. We then summarized these
reasons into 4 categories. Among them, two categories indicate license
problems and require developers’ attention.

1.3.2 Source Code

The second part of our contribution is regarding the source code, which
are:

• We found developers reuse source with certain degree of modifications
varying from renaming variables to rewriting the whole algorithm,
based on an analysis of how developers reuse source code from Q&A
platforms to their projects.

• We generalize several barriers that prevent developers reusing source
code from Q&A platforms, including: (1) too much code modification
required to fit in their projects, (2) incomprehensive code, and (3) low
code quality.

• We summarize developers’ suggestions for next-generation Q&A plat-
forms along the following dimensions: (1) code quality, (2) informa-
tion enhancement & management, (3) data organization, (4) license,
and (5) human factor.

1.4 Overview of the Dissertation

The rest of this dissertation is organized as follows:

6

Chapter 2 reports our work on analyzing license inconsistency and its
evolution based on an empirical study of Debian 7.5 and a collection of
Java projects.

Chapter 3 reports our work on investigating the barriers of code reuse.
Based on an exploratory study on how developers reuse source code from
Q&A platforms, we performed a survey on 453 developers. This study
gives us insights of how to create a next-generation Q&A platforms with
the expectation of improve the code reuse for developers.

Chapter 4 concludes this dissertation and shows directions for future
work.

7

8

Chapter 2

Analysis of License
Inconsistency in Large
Collections of Open Source
Projects

2.1 Introduction

Software reuse has long been advocated as a good practice to reduce de-
velopment time and increase product quality [14, 17, 36, 51, 61, 87]. The
popularity of Free and Open Source Software (FOSS) has made software
reuse a common practice. FOSS software can be defined as software that
is licensed under a free or open source license. In a nutshell, a free and
open source license allows the software to be freely used (as in freedom),
modified, and redistributed (in modified or unmodified form) by anyone, as
long as the conditions of its license are satisfied. The Open Source Initia-
tive (OSI) has defined a set of characteristics that an open source license
should have, and published a list of approved Open Source licenses1. The
Free Software Foundation2 defines a set of similar conditions that a license
should satisfy in order to be considered a free software license.

Developers who reuse FOSS should pay special attention to the license
under which a source file is made available, and make sure that they satisfy
the conditions and limitations of its license. Otherwise they risk losing the
right to reuse the software. Typically, the license of a file is located in the
top part of the file. We will refer to this area of the file as the license
statement of the file.

1http://opensource.org
2http://www.fsf.org

9

http://opensource.org
http://www.fsf.org

The license of a file can only be changed by its copyright owner. In
some special cases, the license terms allow others to change the license
of the file. Otherwise, if the license is changed there is the potential for
copyright infringement. For example in a case of XimpleWare Corp v.
Versata Software Inc. et al3, Versata was sued for including GPL-licensed
code into one of its products but removing the copyright and use notices
required by GPL. This case was settled out of court in favor of XimpleWare.

For the purpose of our study, we are interested in the situation where a
copy of a file has a different license than the original file. If the new license
has not been approved by the copyright owner we are confronted with a
potential license violation. However, in many cases it is not clear whether
the change in license has been approved by the copyright owner. For exam-
ple, the copyright owner might have approved, via direct communication, a
change in license. Under this scenario, the copy has a different license than
its origin, but it is not a license violation. For this reason, when two files
that have the same source code are under different licenses, we say that
there is a license inconsistency between the licenses of the two files. Some
license inconsistency cases might turn out to be license violations.

Anybody who wants to reuse FOSS software should be concerned that
the software being reused is properly licensed. If the reused software con-
tains files that have been copied from other sources, and these files have
license inconsistencies, then it is important to resolve these inconsistencies.
Otherwise the reuser of these files might be involved in legal disputes with
the original copyright owner.

Previous study by Li et al. [55] shows that 36% of the developers who
reused the OSS components changed the source code, but they did not point
out whether these changes involve the license statement. In our study,
we focus on the license statement changes and the license inconsistency
introduced between the different copies of the files.

To the best of our knowledge, no research has been done to discover
and study the characteristics of license inconsistency in software reuse. For
example, how many types of license inconsistencies are there? Do they
exist in open source projects? If so, what is the proportion of each type?
What caused license inconsistency?

Based on these questions, we set our research question as follows:

• RQ1 How can we categorize a license inconsistency?

• RQ2 Do license inconsistencies exist in open source projects?

• RQ3 What is the proportion of each type of license inconsistency?

• RQ4 What caused license inconsistencies? Are they legally safe?

3http://www.ifross.org/en/artikel/versata-saga-settled-prejudice-1

10

http://www.ifross.org/en/artikel/versata-saga-settled-prejudice-1

The contributions of this work are:

1) We describe and categorize different types of license inconsistencies.

2) Based on existing tools for license identification and clone detection,
we have developed a method to detect license inconsistencies. We
perform an empirical study with this method using two sets of FOSS
projects. This study reveals that license inconsistencies exist. It also
proved the feasibility of our method.

3) We perform a manual analysis of some license inconsistency cases to
understand the reasons behind them. We then summarized these rea-
sons into 4 categories. Among them, two categories indicate license
problems and require developers’ attention.

This chapter is organized as follows. Section 2.2 describes background
on FOSS licenses and license inconsistencies. Section 2.3 introduces our
research method. Our empirical study that uses this method is described
in Section 2.4, followed by Section 2.5 with a discussion of the results.
Section 2.6 describes threats to validity. After a description of related work
in Section 2.7, Section 2.8 concludes this chapter and points out the future
direction.

2.2 License Inconsistencies

A software license is a permission to reproduce, modify and redistribute a
software, usually granted under certain conditions. An open source license
is a software license that follows Open Source Definition4 and is approved
by the Open Source Initiative. As of today, only 82 licenses have been
approved as Open Source License 5. However Black Duck Software claims
that the Black Duck Knowledge Base includes over 2200 licenses6. Some
licenses have been grouped under the same name as different versions. For
example, the General Public License (GPL) has versions 1, 2 and 3. Each
version is, in legal terms, a totally independent license.

To reuse OSS source code files, developers must identify the license
under which the files are made available, understand their terms, and satisfy
their requirements. This is not a trivial task because some open source
licenses do not usually allow easy integration with software under another
license (see German and Hassan [34] for a detailed discussion on this issue).

4http://opensource.org/definition
5https://opensource.org/licenses/alphabetical
6http://www.blackducksoftware.com/products/knowledgebase

11

http://opensource.org/definition
https://opensource.org/licenses/alphabetical
http://www.blackducksoftware.com/products/knowledgebase

For example, software under the Apache Public License version 2 (Apache-
2.0)7 can be reused and integrated into software licensed under the GPL-3.0.
On the other hand, software under the GPL-2.0 cannot be combined with
software under the GPL-3.0 (however software under the GPL-2.0+, that
is version 2 or any later version of the GPL, can be). Therefore, developers
must know the licenses of files they reuse in order to avoid license violations.

It is also known that frequently, the source code files in an application
are under different licenses [59, 60]. In addition, copies of the same file
might have different licenses because the copyright owner has licensed the
file accordingly. For example, the copyright owner has decided to change
the license from one version of the software to the other (even if the software
did not have any changes).

Confusion can arise when a developer wishing to reuse a given file finds
that two or more copies of it have different licenses. Let us assume that
a developer wants to reuse two copies of the same file (not necessarily
identical, due to their own evolution). The first copy, copy A, has license
LA, and copy B has license LB. If the files both came directly from the
copyright owner, then it can be assumed that both files have valid licenses;
but if the files came from third parties, one has to question if such parties
have modified the licenses without the approval of the copyright owner
(resulting in a potential license violation).

Usually, the license of an open source file is indicated in its license
statement, found in the first comments of each source file. Here is an
example of a license statement taken from getopt.c file in GNU library,
which states that the file is under the GPL-3.0+:

/* Getopt for GNU.
* NOTE: getopt is part of the C library, so if you don’t
* know what "Keep this file name-space clean" means, talk
* to drepper@gnu.org before changing it!
* Copyright (C) 1987-1996, 1998-2004, 2006, 2008-2012 Free
* Software Foundation, Inc.
* This file is part of the GNU C Library.
*
* This program is free software: you can redistribute it
* and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation;
* either version 3 of the License, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more
* details.

7In this chapter we will use the abbreviations of FOSS licenses of the Software Package
Data Exchange (SPDX), found at http://spdx.org/licenses/.

12

http://spdx.org/licenses/

*
* You should have received a copy of the GNU General Public
* License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/

Generally, the license statement of a source file can only be modified
by its copyright owner. Reusers shall never modify the license statement
unless it is under the permission of the copyright owner or allowed by the
terms of the license.8 Otherwise, the reusers may incur a license violation.

In order to identify potential license violations, the first step is to iden-
tify license inconsistencies between files of different projects. In the follow-
ing subsections, we introduce our definition of license inconsistency and give
an example of a license inconsistency we have found in Debian 7.5. Finally
we categorize them based on our analysis of our two target datasets.

2.2.1 Definition

For the purpose of this research, a license inconsistency refers to the situa-
tion where two source files contain the same source code but have different
license statements.

2.2.2 Example

In the Debian 7.5 Linux distribution, two packages, dpkg and anubis, con-
tain a file named obstack.c. Except for the license statement, these two
files are identical. For this reason we assume that these two files share the
same provenance.

From package dpkg, the license of this file is GPL-2.0+:

[...]
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.
[...]

While from package anubis the license is GPL-3.0+:

[...]
This program is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either

8Some licenses, such as the Mozilla tri-license (which allowed the reuse of the file
under either the MPL-1.0, the GPL-2.0+ or the LGPL-2.1) allow the user to remove
one or two licenses. Similarly, files are frequently licensed with the ability to use newer
versions of the license (corresponding to the + sign in the SPDX abbreviations of license
names, such as GPL-2.0+).

13

version 3 of the License, or (at your option) any
later version.
[...]

As we can see, the licenses of the two files are different: GPL-2.0+ and
GPL-3.0+. The first file can be combined with software under the GPL-2.0,
but the second cannot (the GPL-2.0 is incompatible with the GPL-3.0).
Based on our definition, this is a case of license inconsistency. Without
tracing the history of each of these files, it is not possible to determine if
both licenses are valid (i.e. if the copyright owner of made the file available
under both licenses). The following are three of many potential scenarios
that lead to this inconsistency:

1) The first file is the original one and was copied to the second project,
where the license was changed from GPL-2.0+ to GPL-3.0+. In this
case, because the original license allows to use newer versions of the
license, the change can be done by anybody, and it is not a potential
license violation.

2) The second file is the original one and was copied to the first project.
The license version was changed from GPL-3.0+ to GPL-2.0+ in the
first project. This could be a potential violation if the change was
made without the approval of the copyright owner of the file.

3) Both of the files are copied from the same third-party project (who
created the file). Each project made the copy at different times, one
before, and one after the license of the file was changed by the original
project copyright owner. In this case, there is no potential license
violation.

To determine which one is the actual reason of the inconsistency, we
need to examine the repository history of these two projects and try to
determine the true origin and if possible, identify the rational for this mod-
ification of license. This topic will be discussed in Section 2.4.1.

2.2.3 Categorization

Based on the analysis of our two datasets, we observed 5 types of license
evolution. They are either executed by the original author or reuser:

1) License Addition: The source file was without a license, and a license
is added in a later time.

2) License Removal: The source file was under a certain license, and
the license is removed in a later time.

14

3) License Upgrade: The source file was under a certain version of the
GPL license—a license that allows an upgrade (such as the GPL-2.0+
and GPL-3.0+)—and it is upgraded to a newer version of the license.

4) License Downgrade: The source file was under a certain version of
a license, and it is downgraded to an older version of the same license.

5) License Change: The source file was under a certain license, and it
is changed to another license (except for License Upgrade and License
Downgrade).

Note that, in the context of this chapter in the case of license upgrade
and downgrade, we only consider the GPL license family. This is because
currently only the GPL licenses have a “or later” option (e.g. GPL-2.0+,
LGPL-2.1+) which allows the reuser to choose a later version of GPL when
reusing the software (i.e. to upgrade to a newer version). Although some
other licenses, such as the Apache license, may have different versions,
reusers are not allowed to choose an arbitrary version of the license. Thus
it is reasonable to treat various versions of these licenses as completely
different licenses. For such reason we treat the license evolution between
different versions of licenses other than GPL as license change in this study.

License inconsistencies are naturally caused by changes in the license
of the files. We use the following types to denote different types of license
inconsistencies between two files:

LAR License Addition or Removal. One of the two files contains a license
while the other file contains no license. This type of license incon-
sistency is usually caused by either a license addition or a license
removal. We consider both addition or removal in this inconsistency
because until the provenance analysis is done, we do not know if the
license was added or removed by the third party.

LUD License Upgrade or Downgrade. One of the two files contains a certain
version of a license while the other file contains a different version of
the same license. This type of license inconsistency is caused by either
upgrading or downgrading the license of the file.

LC License Change. Two files contain different licenses (excluding LUD
cases). This type of license inconsistency is usually caused because
the license of the file was changed.

2.3 Method to Detect License Inconsistencies

In our previous work [110], we have proposed a method that can efficiently
detect license inconsistencies. However, a major issue with that method is

15

that it only considers license inconsistencies among files that have the same
file name (in order to achieve a fast performance). Thus if files are renamed
during the process of copy-and-own reuse, a license inconsistency will not
be detected. To solve this problem and make our result cover more license
inconsistency cases, we propose a new method in this chapter. A detailed
comparison of these two methods will be discussed in Section 2.5.1.

In our new approach, we focus on detecting license inconsistencies among
file clones. In the scenario of source code reuse where source files are im-
ported from an upstream project, the contents of reused source files remain
almost the same, sometimes with small changes (such as modifying com-
ments, renaming identifiers etc.) [74].

To decide whether source files are copies of each other—or in other words
whether they share the same provenance—we compare their normalized
token sequences [73]. Normalized token sequences are generated from the
source file by removing the comments, redundant white spaces, new lines,
carriage returns and then converting identifiers to normalized tokens. If two
files have the same normalized token sequences, then it is likely that they are
copies of each other and we call them file clones, which are actually Type-2
code clones [73, 74]. We use CCFinder [48], a code clone detection tool, to
analyze and determine if files are file clones. CCFinder will generate a pre-
process file which contains the normalized token sequences of the source
file. For those file clones with the same normalized token sequences, we
assume that they come from the same origin, and then gather them into
the same file group. Files in the same file group might have different file
names but similar program statements, possibly with different comments
including license statement.

Once that we group these similar files, we identify the license of the
files in each group. In our approach we used Ninka to detect the license
of source files, since Ninka is reported to have the highest precision of all
the license detection tools including FOSSology, ohcount and OSLC in the
research by German et al. [35]. Ninka is a sentence-based license detection
tool which can identify 110 different licenses with 93% accuracy, and it can
handle more than 600 files per minute. There are two special results from
Ninka: one is UNKNOWN, which represents that Ninka has found a license
but does not recognize it. The other one is None, which states that the
source file has no license.

We then compare the licenses of each file in the license list of each group.
If all the files have no license, or all of them have the same license, then
there is no license inconsistency. Otherwise, the group is likely to contain
one or more types of license inconsistencies. And then, based on the relation
between licenses, our approach identifies the type of license inconsistency.
Note that a group may have multiple types of license inconsistencies. For
example, if a group consists of a file under GPL-2.0+, a file under GPL-3.0+

16

Table 2.1: Strategies to decide whether a certain type of license inconsis-
tency exists in a group.

Inconsistency Type Strategy

LAR #None > 0 and #Lic > 0
LUD #GPL ≥ 2
LC #GPL ≤ 1 and #Lic ≥ 2

and another file under Apache-2.0, then the group has two types of license
inconsistencies: LUD between GPL-2.0+ and GPL-3.0+, LC between GPL-
2.0+/GPL-3.0+ and Apache-2.0. For such reason, we calculate License
Inconsistency Metrics for each of these groups, from which we can measure
what type of license inconsistency and how many of each type exist in the
groups.

2.3.1 License Inconsistency Metrics

The following five metrics are introduced to help measure the license in-
consistencies for a file group:

#File: Number of files in this group.

#Lic: Number of different licenses in this group. If there are two or more
licenses found, then it is likely that there is a license inconsistency. If no
license, or only one license is found, then all the files are either without
license, or they have the same license.

#Unknown: Number of files with an unknown license in this group. For
our purposes we consider all the files with unknown licenses as if they
have the same license (this might under-estimate the number of license
inconsistencies).

#None: Number of files without any license in this group. If #None > 0
and #Lic > 0 then it is possible that at least one file in the group had
its license added or removed (i.e. LAR inconsistency).

#GPL: Number of licenses in GPL family (any version of the LGPL, GPL
or AGPL licenses). This metric allows us to identify LUD in the GPL
family.

These metrics are calculated for each file group based on their license
lists. The strategies shown in Table 2.1 enable us to decide whether a
certain type of license inconsistency exists in this group.

Specifically, if we query the metrics result for each group based on the
conditions of #None > 0 and #Lic > 0, which mean respectively that

17

there is one or more files with no license(s), and that there is one or more
files with a license, we get what we define as LAR (a license addition or
removal); if we query for those whose #GPL ≥ 2, a condition which means
that there are two or more different licenses in the GPL family (such as
GPL-2.0+ and GPL-3.0+), we get LUD (a license upgrade or downgrade);
and if we query for those based on #GPL ≤ 1 and #Lic ≥ 2, which mean
respectively that there are more than two licenses in this group and that
there is no more than one GPL license (excluding LUD cases), we get LC (a
license change) where one license is changed to another one.

2.3.2 Method of Detecting License Inconsistencies

As a summary, our method is divided into 3 steps:

1. Create groups of file clones: For all the source files in the tar-
get projects, we apply CCFinder to extract the normalized token se-
quences of each file. Note that, although CCFinder itself is a clone
detection tool, we do not utilize the full functionality of CCFinder and
we only use it to generate the normalized token sequences of source
files. By computing and categorizing the hash value of these token
sequences, we then create a group for files that have the same nor-
malized token sequences. Each group contains at least two different
files; i.e., a unique file is not contained in any group.

2. Identify licenses for files in each group: For each group of file
clones, Ninka is used to identify the license(s) of each file. The result
is a list of licenses for each file group.

3. Report groups that contain a license inconsistency and cal-
culate the inconsistency metrics: We compare the license list
of each file group. File groups are reported to have license inconsis-
tencies unless all the licenses on the list are exactly the same. The
result is a list of file groups that contain one or more types of license
inconsistencies.

2.3.3 Example

We illustrate our method with a project shown in Figure 2.1. This project
consists of 4 packages. The source code of foo.c file in Pkg2 is exactly the
same with the one in Pkg1, but the license statement is changed from GPL-
2.0+ to GPL-3.0+; The source code of foo.c in Pkg3 is different from the
one in Pkg1, i.e. they happen to have the same file name. It is reused in
Pkg4 with its name changed to foo100.c and license statement removed.

1. Create groups of file clones: In this step, we use CCFinder to
generate token files for each source file. Since the foo.c file from Pkg1

18

Project Root

Packages

Files

License

Proj

Pkg4

foo100.c

NONE

Pkg3

foo.c

BSD-3-Clause

Pkg2

bar.java

Apache

foo.c

GPL-3.0+

Pkg1

bar.cpp

LGPL

foo.c

GPL-2.0+

Figure 2.1: Hierarchy of a project and the license of each source file. Note
that the foo.c file in Pkg1 was imported to Pkg2 with the license changed to
GPL-3.0+; The foo.c in Pkg3 contains totally different source code than the
one in Pkg1, and was imported to Pkg4 with its name changed to foo100.c
and license removed.

Directory

Directory

Files

Root

Group2

foo100_Pkg4.cfoo_Pkg3.c

Group1

foo_Pkg2.cfoo_Pkg1.c

Figure 2.2: Hierarchy of the grouped files.

and Pkg2 have the same source code (except for their code comments
which include license statement), CCFinder treats them the same,
and generate the same token file. This also applies to foo.c file from
Pkg3 and foo100.c from Pkg4. Thus we can compare the hash value
of the token files and group them into two groups, as shown in Figure
2.2.

2. Identify licenses for files in each group: For each file in the
group, we use Ninka to detect their licenses and make a list of the
file name, group index and the licenses, as shown in Table 2.2. File
name is the name of the source file. GroupID indicates the index we
use to identify file groups.

3. Report groups that contain license inconsistencies and calcu-
late inconsistency metrics: We examine the licenses of each group
and found that both of these groups contain license inconsistencies.

19

Thus we report both of these groups and compute the inconsistency
metrics for each of them, as shown in Table 2.3.

Table 2.2: License list of the selected files from the example project.

File name GroupID Package name License

foo.c 1 Pkg1 GPL-2.0+
foo.c 1 Pkg2 GPL-3.0+
foo.c 2 Pkg3 BSD-3-Clause
foo100.c 2 Pkg4 NONE

According to our rule, #GPL ≥ 2 in Group 1 indicates a case of LUD
in this group, while #None > 0 and #Lic > 0 in Group 2 indicates a case
of LAR in this group. This conclusion is consistent to the scenario in our
example project, since the two foo.c files in Pkg1 and Pkg2 contain GPL-
2.0+ and GPL-3.0+ respectively which is LUD, and the file foo.c in Pkg3 and
foo100.c in Pkg4 contain BSD-3-Clause and no license respectively which
is LAR .

2.4 Empirical Study

We have selected two target datasets for analysis: Debian 7.5 Linux dis-
tribution9 and 10,514 Java projects randomly downloaded from GitHub10.
We then conducted our method on both datasets respectively. Since it is
hardly feasible to determine how many and what types of license inconsis-
tencies are there in the target projects, it is difficult to get an oracle data set
and to perform a quantitative evaluation of our method, specially regard-
ing its recall, which we will talked more about in Section 2.5.4. However,
a qualitative evaluation of this method is discussed in Section 2.5.

The following subsections will present the results obtained from the two
datasets, respectively.

9https://www.debian.org/
10https://github.com/

Table 2.3: List of the license inconsistency metrics for each file group in
the example project.

GroupID #File #Lic #None #Unknown #GPL

1 2 2 0 0 2
2 2 1 1 0 0

20

Table 2.4: Main characteristics of Debian 7.5.

Characteristics Number

Source Packages 17,160
Total files 6,136,637
.c files 472,861
.cpp files 224,267
.java files 365,213

2.4.1 Empirical Study on Debian 7.5

We conducted our study using a large open source Linux distribution, De-
bian 7.5. The source code was downloaded from its official site and its
main characteristics are shown in Table 2.4. Only .cpp, .c and .java files
are used, since they account for the majority of source code in the Debian
distributions and are the file formats supported by CCFinder.

Results

In the first step, we grouped the files under each set by their normalized
token sequences and resulted in 125,092 groups in total. The number of
files within one group ranges from 2 to 160, and the average number of files
per group is 2.8 with a median value of 2. The breakdown of each file type
is shown in Table 2.5.

Table 2.5: Breakdown of number of groups and files for each type in ana-
lyzing Debian 7.5.

File type #Group #Files #Mean #Median

.c 68,568 207,620 3.0 2

.cpp 16,202 38,617 2.4 2

.java 40,322 108,868 2.7 2

Total 125,092 355,105 2.8 2

Completing the following two steps, 6,763 groups were reported to have
at least one type of license inconsistency, which is 5.4% of the 125,092
groups in total. For the sake of space, we show only three of them in Table
2.6, representing each of the three types of license inconsistencies, which
will be discussed in the rest of this section.

Then we calculate the number of each type of license inconsistency
and their proportion. The result is shown in Table 2.7. From this table,
we can see that from the total of 6,763 groups that contain one or more

21

Table 2.6: Partial list of the license inconsistency metrics for each file group
in detecting Debian 7.5.

File name**GroupID #File #Lic #None #Un* #GPL

obstack.c 6645 19 2 0 0 2
getopt.c*** 46474 6 2 3 0 0
getopt.c*** 52662 9 2 1 7 1
...
* Unknown licenses.
** Each group may contain files with different file names. In this case
we choose the majority file name to represent that group.

*** These two groups both contain files named getopt.c, but the source
code between these two groups are totally different.

Table 2.7: Number of different types of license inconsistencies and their
proportion in Debian 7.5. Note that one group may contain more than one
inconsistency types, so that the total percentage can exceed 100%.

Inconsistency type Frequency Perc.

LC 4,562 67.5%
LUD 2,137 31.6%
LAR 883 13.1%

license inconsistency cases, 67.5% of them contain LC, followed by LUD
and then LAR . Further study is needed to investigate the legality of these
modifications.

In the following paragraphs, we show examples for each type of license
inconsistency.

– LAR :
Examining the getopt.c in the second line from the inconsistency result

list in Table 2.6, we get the license list of that group in Table 2.8. The
remaining files that contain the same licenses are omitted from this list.

Table 2.8: Example of LAR inconsistency, in getopt.c

Package name License

icedove NONE
iceweasel MPL-2.0

22

We can see that the license of the getopt.c file from the iceweasel
package has an MPL-2.0 license while the one from package icedove has
no license (marked as NONE). The contents of each file is as follows.

getopt.c from icedove package:

#include <stdio.h>
#include <string.h>
[...]
int main(int argc, char **argv)
{

PLOptState *opt;
PLOptStatus ostat;
[...]
return 0;

}

getopt.c from iceweasel package:

/* This Source Code Form is subject to the terms of the
* Mozilla Public License, v. 2.0. If a copy of the MPL
* was not distributed with this file, You can obtain one
* at http://mozilla.org/MPL/2.0/.
*/
#include <stdio.h>
#include <string.h>
[...]
int main(int argc, char **argv)
{

PLOptState *opt;
PLOptStatus ostat;
[...]
return 0;

}

As we can see in the file from icedove package, there is no license
statement at all, while the file getopt.c from iceweasel package contains a
MPL-2.0 license. Meanwhile, the other parts of these two files are exactly
the same, hence we consider it safe to assume that the origin of both files
is the same. There are several possible explanations to this case of license
inconsistency:

1. The file from icedove package is the original one, and the developers
of iceweasel project reused the file and added a license to it.

2. The file from iceweasel package is the original, and developers of
icedove project reused this file and removed the license statement.

3. Both of the files in these two projects reused different versions of this
file from another project (where the license was added or removed).

23

Table 2.9: License list of group 6645 of obstack.c where LUD exists.

Package name License

dpkg GPL-2.0+
anubis GPL-3.0+

Table 2.10: License list of group 52662 of getopt.c where LC and LAR exist.

Package name License

p0f NONE
snort GPL-2.0
sofia-sip UNKNOWN (IBM)

One way to try to discover which one is the true explanation is to look
at the history of the files in their corresponding version control repositories.
By tracing the revision history of both files, we found that the actual history
reflects the third possible explanation: the files in these two projects were
imported from a third project named nspr, where the getopt.c file was
created without a license in version 4.7.1, and, for version 4.9.1 the license
was changed to the MPL-2.0. It seems that icedove reused this file before
the license statement was added, while iceweasel imported the version
after the license was added, thus caused the inconsistency of license.

– LUD:
To exemplify this type of license inconsistency, we will use obstack.c,

which is in the first line in Table 2.6. Table 2.9 shows two packages that
reuse this file. As we can see from this table, the first file is licensed under
GPL-2.0+ while the second one is under GPL-3.0+.

The license statements of the files from dpkg and anubis package were
listed in Section 2.2.2. Both of these files contain more than 400 lines
of code, and they are exactly the same except for their license statements.
Tracing the file history in both projects we found that this file was originally
created in gnulib. The license of this file was upgraded in gnulib from
GPL-2.0+ to GPL-3.0+. By examining the commit log of dpkg, we found
that the developers of dpkg intentionally reused the older version of the file
from gnulib project (they wanted the file to be licensed GPL-2.0+, not
GPL-3.0+), which caused the license inconsistency.

– LC:
We demonstrate this type of license inconsistency using getopt.c in the

third line from the Table 2.6.

24

As shown in Table 2.10, getopt.c from snort package contains GPL-2.0
while the license of the one from sofia-sip could not be recognized.

The contents of these files are as follows.
getopt.c file from snort package:

[...]
** it under the terms of the GNU General Public License
** Version 2 as published by the Free Software Foundation.
** You may not use, modify or
[...]

getopt.c file from sofia-sip package:

[...]
* COPYRIGHTS:
*This module contains code made available by IBM
*Corporation on an AS IS basis. Any one receiving the
*module is considered to be licensed under IBM copyrights
*to use the IBM-provided source code in any way he or she
*deems fit, including copying it, compiling it, modifying
[...]

From the header we know that the second file is licensed under IBM
copyrights, but this is not a standard version of IBM Public License, thus
Ninka reported it as UNKNOWN. Since both these files contain the same
program code, we may assume that someone changed the license from one
to the other. We tried to find out the direction of this change, but due to
lack of history it was not possible to do so. This shows that determining
the true provenance of a file is difficult in general.

Manual Analysis

To decide whether these license inconsistency cases may indicate legal prob-
lems or not, we have conducted a manual analysis on the history of a subset
of the files.

We randomly chose the samples. To be precise, first we randomly se-
lected a case of license inconsistency and investigated the reason that this
case occurs, then we randomly selected the next case and repeated the pro-
cess. The time needed to investigate each case varies from several minutes
to several hours, depending on how well the related project is documented.
Due to the difficulties and the time invested, we stopped investigating cases
when the reasons are saturated, that is, when same reasons of license in-
consistency kept coming up as we investigate new cases. Based on this
policy, we have investigated 25 cases in total. Then we tried to categorize
them according to the reason that caused such inconsistencies. They are
divided into three categories: safe changes (no violation is found), unsafe
changes (given all information available, it appears to be a violation) and
uncertain (it was not possible to determine whether it was safe or unsafe).

25

Table 2.11: The count and percentage of each category for the 25 investi-
gated license inconsistency cases.

Category # Perc. Sub-category # Perc.

Safe changes 14 56%
Original author changed
the license.

10 40%

Reuser chose a license from
a multi-license.

4 16%

Unsafe changes 6 24% Reuser changed the license. 5 20%
Reuser added one or more
licenses.

1 4%

Uncertain cases 5 20%

Source files are too small to
be considered as clones.

2 8%

Source files cannot be found
in the upstream reposito-
ries.

1 4%

Repositories are not avail-
able.

2 8%

Total 25 25 100%

The results are shown in Table 2.11, and the a detailed explanation of each
category is as follows:

– Safe Changes: In this category, either the original author or the de-
velopers who reused the file changed the license statement, but the change
they made is based on the terms described in the license thus we classify it
as a safe change. They are further divided into 2 groups:

1) Original author modified/upgraded the license. In this case, the author
of that file modified the license statement (either by upgrading or totally
changing it to another license), while the reusers still use the old version of
the file (either intentionally or unintentionally).

For example, as mentioned above we examined a file named obstack.c in
our inconsistency result. This file originates from gnulib project, and its
license is upgraded from GPL-2.0+ to GPL-3.0+ in a commit on 10/7/2007.
This file was reused in the dpkg project but with a GPL-2.0+ license, and
in the last commit on 9/25/2011 the log is as follows:

libcompat: Update obstack module from gnulib. The version taken is the one
before the switch to GPL-3.0+. With a slight code revert to not have to include
exitfail.c and exitfail.h.
[...]

26

We can see that in this case, the reuser intentionally takes an older
version from the original project, which caused the inconsistency of license.

In another example, there is a file named paintwidget.cpp, which origi-
nates from Qt project with BSD-3-Clause license. In another project called
PySide, this same file is licensed under LGPL-2.1/GPL-3.0 dual license.
Since these two projects both belong to Digia plc, which were acquired
from Nokia, this shall be a legal license modification.

2) The file was originally multi-licensed and reusers chose either one. The
author of the file licensed the file under two or more licenses, and the reusers
can choose either one of them.

There is a file named SimpleXMLParser.java which originates from iText
project and was under the Mozilla MPL-1.1/LGPL-2.0+ dual license. This
license allows the removal of one license. Developers in pdftk project reused
this file removing the MPL-1.1 license and chose LGPL-2.0+ as its license.

– Unsafe Changes: Under this category, developers who reused the source
file seemed to have modified the license statement which is not allowed by
the original license terms. This change may lead to legal disputes, thus we
say it is an unsafe change. We should clarify that we have reached this
conclusion based on the historical evidence available. The consequence is
that anybody who would like to reuse these files should pay special attention
to these cases, and do due diligence to determine what is the appropriate
licensing of the file, and if it indeed poses a legal risk.

1) Reuser replaced the original license, and changed the copyright owner.
The file is under a certain license in the original project and developers who
reused the file changed the license statement and the copyright owner.

From our inconsistency list, we examined a file named X. (Because we
do not have certainty regarding our conclusion, we have declared not to
include the names of the projects and files.) According to the copyright
year of X, company Y is the copyright owner, and licensed the file under
BSD-3-Clause. When reused in a project named Z, developers changed the
license to GPL-2.0+ and the copyright header, which is not allowed in BSD-
3-Clause. This kind of changes to the license statement by the reuser may
lead to license infringement, and may involve the reuser into legal disputes.

2) Reuser added one or more licenses. The original file is under some
licenses, and the reuser added one or more licenses to it while retaining the
original license.

From the result we examined a file named DOMException.java. This
author of this file is World Wide Web Consortium (W3C), and was licensed
under W3C Software License. When developers reused this source file in
ikvm project, they added a GPL-2.0 License to it resulting a composition

27

of these two licenses. Meanwhile, the program code of this file was not
changed at all. We consider this case as unsafe, since this type of license
modification makes it unclear which part contains the original license and
which part contains the new license, since they added the license without
adding any source code changes to the file.

– Uncertain Cases: This category contains the license inconsistency cases
which are difficult to determine whether they are legally safe or not due to
several reasons:

1) Source files are too small. Some files contain the same source code, but
due to their small size (e.g., less than 10 lines of code) it is difficult to
decide whether one is reused by the other or they just happen to be the
same. A more detailed case is discussed in Section 2.5.2.

2) Files cannot be found in the upstream repositories. We found many
cases of license inconsistencies in the projects in Debian 7.5 that, when
investigated the upstream project’s repository, the file no longer existed.

For example, our method reported a file named jim-win32.c in jimtlc
package with BSD-2-Clause license and in openocd package with Apache-
2.0 license. When we tried to look for this file in the repository of openocd
project, it was not found. One explanation is that the file was removed in
the project, but was not yet updated in Debian 7.5.

3) Project repository not available. Some project repositories could not be
found due to lack of documentation, while some could not be accessed due
to server error.

One example is, when we tried to checkout the source code of axis
project using the SVN command found on its official website11, the com-
mand returned an error that the URL does not exist.

2.4.2 Empirical Study on Java Projects

The other data set we studied is a collection of 10,514 Java projects ran-
domly cloned from GitHub. The snapshot was taken in Mar. 2015, and
only those projects that consist of at least 100 commits are selected. Table
2.12 shows the characteristics of these projects. Since .java files are 98.9%
of all the files, we will focus our following analysis on them only.

Results

In the first step, source files are grouped by their normalized token se-
quences. The result was 199,284 groups. The number of files within each

11https://axis.apache.org/axis/cvs.html (Last access: Oct. 2nd, 2015)

28

https://axis.apache.org/axis/cvs.html

Table 2.12: Main characteristics of Java projects cloned from GitHub.

Characteristics Number

Projects 10,514
Total files 3,374,164
.c files 15,627
.cpp files 21,176
.java files 3,337,361

Table 2.13: Number of groups and files in each group in analyzing Java
projects.

File type Group count #Files #Mean #Median

.java 199,284 769,220 3.9 2

group ranges from 2 to 1514, and the average number is 3.9 with a median
value of 2, as shown in Table 2.13.

With the following steps being done, 13,916 groups are reported to
contain one or more license inconsistencies, which is 7.0% of the 199,284
groups in total.

Furthermore, the number and proportion of each type of license incon-
sistency is shown in Table 2.14.

Manual Analysis

As we did in the Debian study, we examined a random sample of the incon-
sistent groups. We sampled 17 cases, and tried to categorize them according
to the reason that caused such inconsistencies. As described before, they
are divided into three categories, the percentage of each category is shown
in Table 2.15, and the explanation to each category is as follows:

– Safe Changes:

Table 2.14: Number of different types of license inconsistencies and their
proportion in Java projects.

Inconsistency type Number Perc.

LC 12,653 90.9%
LAR 6,179 44.4%
LUD 1,316 9.5%

29

Table 2.15: The count and percentage of each category for the 17 investi-
gated license inconsistency cases in the Java projects.

Category # Perc. Sub-category # Perc.

Safe changes 11 65%

Source files are in the same
project but with different
licenses.

8 47%

Duplicated projects are not
up-to-date.

2 12%

Reuser added a same li-
cense to the source file.

1 6%

Unsafe changes 1 6% Reuser modified the license
terms.

1 6%

Uncertain cases 5 29%
Licenses are modified out-
side the scope of their
repositories.

1 6%

Source files are too small. 4 24%

Total 17 17 100%

1) Source files are in the same project but with different licenses. Some
projects were imported from other version control systems, such as SVN,
where branching and tagging makes copies of the whole project. When the
license of source files in the main branch (trunk) changes, license inconsis-
tency occurs among these branches.

For example, there is a project named weka which was imported from
SVN. In this project, files were originally licensed under GPL-2.0+ and
then upgraded to GPL-3.0+. Developers made a series of tags in the SVN
repository, leaving several copies of the whole project. Thus license incon-
sistencies exists between the files under the tags which were made before
the license upgrade and those in the trunk.

Some other cases are, the source files are in the same project but exist
under different directories with different licenses.

2) Duplicated projects are not up-to-date. Some entire GitHub projects
(or subdirectories in other cases) are a copy (clone) of another project,
and their license of source code is not updated while the original project
changed its license.

We examined two projects: JCrypTool12 and JCT-CA13. A file named
ResizeHelper.java exists in both projects with the same normalized token se-

12https://github.com/jcryptool/crypto
13https://github.com/Kalliope/minica

30

https://github.com/jcryptool/crypto
https://github.com/Kalliope/minica

quences. The one in JCT-CA is without a license, while the one in JCrypTool
was originally with no license but then added with a EPL-1.0. The readme
file from JCT-CA states:

JCT-CA is going to be a plugin for the JCrypTool regarding Public
Key Infrastructure. Main development is done in the master branch,
others (if any) are just for backing up older parts of the project
and keeping master clean.

From this notice we can see that, this project is a partial backup of the
JCrypTool project, but its license is not up-to-date when the original copy
has changed, resulting in a license inconsistency.

3) Reuser added a same license to the source file. One rare case we found
is, the developers of a reused source file, which is under Apache-2.0, added
another exactly same Apache-2.0 license description in the header. One
explanation is that the developers are using automated tools to manage
the licenses, but did not check whether the file already contains a license.
Though it does not conflict with the license terms, we consider it as a bad
smell.

– Unsafe Changes:

1) Reusers modified the license terms. Some developers reused the code
from other projects but made some modifications to the license terms. In
this case, if it is not with the permission from the original author, these
modifications are unsafe.

There are two files, both named F, in project M and N. These files are
originally from project O, and M is a fork of the this project. The license
of this file in O is MIT, while the one in N was changed to GPL-2.0+ with
link exception.

– Uncertain Cases:

1) Licenses are modified outside the scope of their repositories. There are
cases that, the source files in different projects are with different licenses,
but their license statements have never changed since they were imported
into these repositories. Another alternate explanation is that developers
downloaded the software and modified the license before the first commit
into the new repository, making it impossible to track the point where the
license was changed.

2) Source files are too small. This case is same as the one in Debian data
set. This issue will be discussed in Section 2.6.

For example, a file named ReaderInputStream.java was found in bingo-core
project with an Apache-2.0 license and in hibernate-orm project with an

31

LGPL license. However, the source code contents of these files are quite
small, which merely contains two empty constructor methods. The source
code part excluding the comments is shown as following:

[...]
import java.io.IOException;
import java.io.InputStream;
import java.io.Reader;
public class ReaderInputStream extends InputStream {

private final Reader reader;
public ReaderInputStream(Reader reader){

this.reader = reader;
}
@Override
public int read() throws IOException {

return reader.read();
}

}

It is possible that different developers wrote the same code like this
from scratch, thus it is difficult to judge whether these files are copies of
each other.

2.4.3 Discussion of the Results

From these results we can see that license inconsistencies are not uncom-
mon: in Debian 7.5, out of 125,092 file groups, 6,763 (5.4%) of them contain
one or more license inconsistency cases: LC has the highest proportion with
67.5%, followed by LUD with 31.6%, LAR comes next with 13.1%. While
in Java projects, out of 199,284 file groups, 13,916 (7.0%) of them contain
one or more license inconsistency cases: LC has the highest proportion with
90.9%, followed by LUD with 44.4%, LAR comes next with 9.5%.

The manual analysis of several cases of license inconsistencies gives us a
rough understanding of how many of these cases are safe or not. From Table
2.11 and Table 2.15 we can see that, both in Debian 7.5 and Java projects
we selected, unsafe and uncertain cases take up 44% and 35% respectively.
This shows that it is not uncommon that license inconsistencies might lead
to potential license violation problems.

During this process of the analysis, we also found several challenges that
prevent us from automatically analyzing the history of files.

Many files in an open source project are frequently imported from other
projects. It is not a trivial task to find the repositories of these upstream
projects. Take the Debian distribution as an example: some of the packages
contain a file indicating the repository URL of that package, but some do
not. For such packages, we needed to search for the official site of the
upstream project and try to find its repository URL. There are packages
that appear not to use version control systems. They simply provide source

32

code tarballs for each version on their server. In this case, we have to
download each tarball and track the license change manually. This makes
provenance tracing more difficult.

In some cases the change of the license statement is not recorded in
the revision history because the license statement is changed (we presume)
before the file is added to the repository’s project. In this case, we have
to check other information (e.g. on the official site of the project or in
the commit comment where the file was added) to find out the reason why
developers changed the license. Our results are consistent with Vendome
et al. [95], who found a lack of traceability for license changes.

Also, after we found out that the files with the same normalized token
sequences in different packages contain different licenses, we have to de-
termine where the file comes from, i.e. the original project of that file, in
order to decide the direction of the license change. But to the best of our
knowledge, there is no good way to find the true origin of a certain file. We
address this problem by using the date of the first commit of that file as
a reference. When we have two copies in different repositories, we assume
that the file with the oldest commit is the original, and files with newer
dates are copies of it. If the commit date is not available, e.g. when not
using a version control system, we have to manually check the comments
of the source file to see if it contains information about its true origin or
its license. If not, then we are not able to decide which file comes first.

2.4.4 Answering RQs

Revisiting the research questions:

• RQ1: How can we categorize a license inconsistency? We categorize
license inconsistencies into these 3 types: i) LAR , which is typically
caused by license addition or removal; ii) LUD, which is related to
license upgrade or downgrade in the GPL family; iii) LC, which is
usually caused by license change in the process of license evolution.

• RQ2: Do license inconsistencies exist in open source projects? Yes,
license inconsistencies exist in open source projects. As we have
shown in our empirical studies of Debian 7.5 and a large collection of
Java projects on GitHub, various types of license inconsistencies were
detected.

• RQ3: What is the proportion of each type of license inconsistency?
In the case study of Debian 7.5, out of 125,092 file groups, 5.4% of
them contain one or more license inconsistency cases. The proportion
of each type is: LAR (13.1%), LUD (31.6%) and LC (67.5%). In the
case study of Java projects, out of 199,284 file groups we selected,

33

7.0% of them contain one or more license inconsistency cases. The
proportion of each type is: LAR (9.5%), LUD (44.4%) and LC (90.9%).

• RQ4: What caused license inconsistencies? Are they legally safe?
The reasons that caused license inconsistencies can be summarized
into these groups according to our observation:

i) Original author modified/upgraded the license.
ii) The file was originally multi-licensed and reusers chose either one.
iii) Reuser added one or more licenses.
iv) Reuser appears to have replaced the original license, and changed

the copyright owner.

We consider the last two types of modification as unsafe, which would
require further analysis to determine the legal risk associated with
using them.

2.5 Discussion

In this section, we show the improvement we made to the research method
with a comparison between these two methods, followed by a survey on
developers involved in license inconsistencies.

2.5.1 Improvement of the Method

As described in Section 2.3, our previous method [110] omits the cases if
the files are renamed during the process of copy-and-paste reuse to achieve
higher performance.

In the previous method, we assume that many copy-and-paste reuse
are conducted without renaming the source files. Thus we first create file
sets where each set contains source files with the same file name. And
then, under each file set, we then group the files by their normalized token
sequences. Finally, we identify the licenses for each file in every file group
and calculate the license inconsistency metrics.

In this study, however, the new method treats all the source files as a
whole set, and groups them by their normalized token sequences. Thus it
should obtain a more comprehensive result of license inconsistencies.

The following two subsections compare the two methods on the two
data sets we used, respectively.

Debian 7.5

Table 2.16 shows the comparison of results obtained by the two methods,
for Debian 7.5.

34

Table 2.16: Comparison of two methods on Debian 7.5.

Number of groups New method Previous method

Total 6763 5344
Intersectioni 5344 5344
Relative complementii 1419 0
i Intersection indicates the groups both method reported.
ii Relative complement indicates the groups reported in one
method but not the other.

Table 2.17: Comparison of two methods on Java projects.

Number of groups New method Previous method

Total 13,916 13,894
Intersection 13,894 13,894
Relative complement 22 0

As we can see from the table, the new method covers all the groups
that the previous method reported. Besides, it also reported 1419 (21.0%)
more license inconsistency groups. As a conclusion: the result from the
new method is a superset of the one from the previous method, which is
consistent with our expectation.

Java Projects

Table 2.17 shows the comparison of results obtained by the two methods
when applied to the Java projects in GitHub.

Again we can see from this table, the new method covers all the groups
that the previous method reported. However, there are merely 22 more
groups reported by the new method, from which we can infer that the
renaming operations are not frequently conducted in the process of copy-
and-paste code reuse in these Java projects. This also proves that our
previous method is able to produce a good result in detecting license in-
consistencies where rename operation are not often conducted during the
process of code reuse.

2.5.2 What Appears to Be a Copy Might Not Be a Copy

We sent emails to the 3 development teams of the projects where unsafe
license modification were found, to understand why they modified the li-
cense and whether they consider it as an illegal modification and two of
them replied us. One of them claimed that they wrote the source code all

35

from scratch, and denied that this source file was copied from somewhere
else. This source file was so small which contains merely two empty con-
structors, thus we believe it is possible that different developers happen
to create the same file. Note that, this is not a false positive case of our
method, since our method is designed to detect license inconsistency cases
in the target projects, not the license violation cases. However, it stresses
the need to consider a minimum size threshold, in order for these small files
not be considered in the analysis.

2.5.3 Changes Were Made Under the Permission of Copy-
right Owner

In another case, we found that Glassfish project included some copies of
Apache code. However, in Glassfish project, the license of these files are
changed from Apache-2.0 to CDDL and then to a combined license: CDDL,
GPL-2.0 or Apache-2.0. The reply from the Glassfish team is that, they are
using an automatic tool for license maintenance, and this tool mistakenly
replaced the Apache-2.0 license with CDDL. This change was reported
to them, and then they discussed with people at Apache and reached an
agreement that these files should be updated with the combined license
mentioned above. In this case, although license inconsistency exists, the
change of license is under the permission of the copyright owner, thus we
consider it legally safe.

2.5.4 An Attempt in Measuring the Recall

We have attempted to search on Google with keywords “site:bugs.debian.org
license” in expectation of getting a list of bug reports in Debian project
that are related to license inconsistency issues, so that we can use them
as ground truth to measure the recall of our method. However, with a
manual inspection on the top 10 results returned by Google, none of these
bug reports are related to the license inconsistency issues discussed in this
chapter. For example, some bug reports are discussing the issue that the
license is missing from some source files, which can hardly be utilized in
this research. Therefore, it is difficult to build a ground truth for us to
measure the recall of our method.

Nevertheless, although bug reports about license inconsistency are not
found in the results of Google search, license inconsistency cases do exist in
reality as shown in the previous sections. Thus we believe our method is still
useful in discovering potential license issues related to license inconsistency
problems.

36

2.6 Threats to Validity

In our approach, CCFinder was used to obtain the normalized token se-
quences of the source files. We then put files into the same clone group if
they have the same hash value of normalized token sequences. Although
CCFinder itself is a clone detection tool, we do not utilize the full func-
tionality of it, thus the accuracy of CCFinder is not directly related to the
accuracy of our method.

Meanwhile, source code files are evolving: those that come from the
same provenance may differ from each other dramatically after being mod-
ified by developers, resulting in different normalized token sequences thus
making our method fail to detect these license inconsistency groups. A
possible solution to this problem might be using pairwise checking method
instead, e.g. detect clones based on the similarity of each pair of source
files. However, in a conventional pairwise checking method, n2 pairs of
source files need to be processed when there are n source files in total. In
our approach, we only need to calculate the hash value of the normalized
token sequences of each file, and the files that have the same hash value
would be naturally put into the same clone group. Thus the time complex-
ity of our approach would be O(n) instead of O(n2) in the pairwise checking
method. Due to this performance reason, we chose to use hash approach
instead of pairwise checking method in this chapter. And since we can still
get large numbers of file groups that contain license inconsistencies using
this method, we believe that it is good enough for this exploratory study.

On the other hand, during our manual analysis we found file clones that
contain the same normalized token sequences, but due to their small size
and simplicity, it is difficult to decide whether they are copies of each other
or they were written from scratch by independent developers. If the later
one is the actual case, then it would be a false positive of our result. But
we believe it might be good practice to report these cases, have a manual
investigation on them and ask the developers directly.

One aspect that is important to highlight is that our method relies on
the ability to detect copies of files. In our previous paper [110], we found
copies of files by analyzing files with the same name. In this study we
compared the normalized token sequences of files. We could also do full
clone detection and consider two files to be copies of each other only if they
were above certain threshold. This process would have been significantly
more time consuming. Ultimately, detecting license inconsistencies is a
balance between performance of the detection vs. recall. If necessary, step
one of our method can be replaced with other methods that provide better
recall, at the expense of being slower, and potentially require more manual
analysis to filter out false positives.

37

It is also important to highlight that the ability to detect license in-
consistencies relies heavily on having a comprehensive corpus to compare
against. In this study we have used two collections of source code: De-
bian 7.5 and Java GitHub projects. License inconsistencies in the source
code can only be found if the original code is in the corpus that is being
compared against.

In the process of license identification, as we used Ninka to identify
the license of source files, its accuracy should also be considered. German
et al. reported that the accuracy of Ninka is 93% [35]. We believe this
is sufficiently high, so that the license detection result is good enough to
support our analysis. In addition, we regard UNKNOWN licenses as the
same license within each group, different from any other licenses. If these
UNKNOWN licenses in a same group are actually different from each other,
we may underestimate the number of license inconsistency cases. But this
concern is mitigated according to our observation to these UNKNOWN
licenses: most of those in the same group actually contain the same li-
cense statement, either a license that is not approved by OSI or a user
modified version of an OSI-approved license. On the other hand, if these
UNKNOWN licenses are actually the same as those recognized ones (e.g.
GPL-2.0, BSD-3-Clause etc.) in the same group, this could be considered
as a false positive. In this case, these UNKNOWN licenses are not exactly
the same as the original license, meaning that someone must have modified
the license statement (making Ninka not able to recognize the license). We
believe that it is necessary to check whether these changes are legal or not.
Thus it is reasonable to treat them as license modifications, which is con-
sistent with our assumption. To obtain more precise results, it is necessary
to improve the accuracy of license identification.

2.7 Related Work

Many studies address inconsistent changes among code clones. Krinke [50]
studied on changes applied to code clones in open source software systems
and showed that half of the changes to code clone groups are inconsistent
changes and these changes are not solved if they occurred in a near ver-
sion. Göde and Harder [39] studied patterns of consecutive changes to code
clone in real software systems. Some approach to find inconsistent changes
are proposed [27, 43]. On the other hand, Bettenburg et al. [15] showed
that only 1% ∼ 4% of inconsistent changes to code clone introduce soft-
ware defects. In addition, Göde and Koschke [40] showed that most code
clones do not evolve and the number of inconsistent changes is small. Our
work does not address inconsistency in changes to code clones but incon-
sistency among licenses under which source files including code clones are
distributed.

38

In addition, many studies in software engineering investigated software
license. Some approaches for software license identification are proposed
[35, 38, 92]. Using these approaches, some researches analyzed software
licenses in open source projects and revealed some license issues. Di Penta
et al. [23] provided an automatic method to track changes occurring in the
licensing terms of a system and did an exploratory study on license evolu-
tion in six open source systems and explained the impact of such evolution
on the projects. German et al. [33] proposed a method to understand li-
censing compatibility issues in software packages. They mainly focused on
the compatibility between license declared in packages and those in source
files. In another research by German et al. [32], they analyzed license
inconsistencies of code siblings (a code clone that evolves in a different sys-
tem than the code from which it originates) between Linux, FreeBSD and
OpenBSD, but they did not explain the reasons underlying these inconsis-
tencies. Alspaugh et al. [5] proposed an approach for calculating conflicts
between licenses in terms of their conditions. However, our work proposed
an approach to find license inconsistencies in similar files. By investigating
the revision history of these files, we summarized the factors that caused
these license inconsistency cases and tried to decide whether they are legally
safe or not. Zhang et al. [118] proposed an automatic method to check li-
cense compliance problems caused by ignorance or carelessness. They use
Google Code Search to discover file clones with different licenses, while our
method detect file clones within our target data sets. Recently Vendome
et al. [95] performed a large empirical study of Java applications and found
that changing license is a common event and a lack of traceability between
when and why the license of a system changes. In their following research,
Vendome et al. [96] investigated the reasons on when and why develop-
ers adopt and change licenses during evolution of FOSS Java projects on
GitHub by conducting a survey with the relevant developers. They con-
cluded that developers consider licensing as an important task in software
development. However, license implications or compatibility are not always
clear and so they can lead to changes. In addition, other external factors,
such as community, purpose of usage and use of third-party libraries also
influence the projects’ licensing.

2.8 Conclusion of This Chapter

This chapter describes and categorizes different types of license inconsis-
tencies, some of which might lead to potential license violations. We also
proposed a method to identify files that might have license inconsistencies.
With the proposed method, we managed to detect all these types of license
inconsistencies from two data sets of open source projects: a Linux distri-
bution Debian 7.5 and Java projects selected from GitHub. These results

39

show the existence of license inconsistencies in open source projects and
prove the feasibility of our method.

With a manual analysis on some license inconsistency cases, we discov-
ered that there are several reasons behind them: in some cases the copyright
owner changed the license statement; sometimes reusers exercised the per-
mission that the file license gave them to remove one or more licenses from
the file; in other cases, reusers added another license to the file; and fi-
nally, reusers modified the license. Among them, the last two categories
are potentially unsafe and require further investigation.

Although the time needed for manual analysis on each case is relatively
long, for developers who use our method, they only need to focus on the
projects they are interested in (e.g. the projects they are maintaining).
Thus the files they need to check are merely a small portion of the whole
population. And we consider it feasible for developers to make sure their
project involves no license violations using this proposed method.

In the process of our manual analysis, we came across a great difficulty
to find out the reason behind each license inconsistency case. On one hand,
it is difficult to find out from where a certain file in a project is imported
when lacking enough information. On the other hand, it is also not a
trivial task to decide which file is the original work when they are found
in multiple projects. We tried to utilize creation date of the source files as
the metric to decide which one is the original one. However, different ways
of duplicating files have different influences on the creation date of that
duplicated file. Pulling from a git repository or simply copy-and-pasting
a file will override the creation date; extracting files from an archive file
(such as a zip file) will not override the creation date. Thus we consider
it not sufficient to decide the provenance of a file using the creation date
only. These problems highlight the need for a method to find and maintain
the provenance between applications.

For future work, we will apply our tool to more projects and examine
the proportion of each type of license inconsistency. We are especially
interested in applying this method to industrial projects and see whether
closed source projects comply with the license terms of open source licenses.
With the increased number of projects, we believe that many more license
inconsistency cases will be found. And we will try to make a quantitative
evaluation of this tool. Furthermore, we will try to develop a method to
help us analyze the history of each file, so that we can decide the safety of
these inconsistencies efficiently.

40

Chapter 3

How Do Developers Utilize
Source Code from Stack
Overflow?

3.1 Introduction

Technical question and answer (Q&A) platforms such as Stack Overflow
have become more and more important for software developers to share
knowledge. Developers can post questions on these Q&A platforms, which
in turn are answered by other developers. These answers often contain
source code snippets. As of August 2017, Stack Exchange reports that
there are approximately 7.6 million users and 14 million questions with 23
million answers on Stack Overflow [83]. Among those answers, 15 million
(75%) have at least one source code snippet attached, which forms a huge
code base for developers to reuse source code from.

However, reusing source code is not easy [29]. For example, these are
two of the challenges that developers face when reusing source code from
Q&A platforms:

(1) It is difficult for developers to find suitable source code based on their
particular needs, such as language, functionality, and performance [98].
To address this challenge, a number of studies have been done to help
developers to locate more relevant source code snippets [67, 68, 98, 103].

(2) Even if developers are able to find suitable source code, it may be
difficult to integrate the code in their own projects. For example, pa-
rameters may need to be adjusted, or additional source code may need
to be added [22]. To address the challenge of code integration, various
techniques have been proposed [22, 44, 63, 64, 114], such as automati-
cally renaming variables to make the code fit in the required context.

41

Prior studies [13, 36, 90, 112] on reusing source code from Q&A plat-
forms have mostly focused on helping developers to locate relevant source
code, and on integrating that source code into their own project. In our
study, however, we build upon these studies by investigating how develop-
ers utilize code from Q&A platforms. Such knowledge will help us better
understand the potential barriers that developers face when reusing code
from Q&A platforms. In this chapter, we use this knowledge to provide
a roadmap for improving source code reuse on next-generation Q&A plat-
forms.

We first conduct an exploratory study of 289 source code files from 182
open-source projects, which contain at least one link to a Stack Overflow
post. We manually study each file and its linked Stack Overflow post, to
investigate how developers reuse code from Stack Overflow. We found that:

• In 44% of the studied files, source code had to be modified before it
could be used in the developer’s own project. The required modifica-
tion varied from simple refactorings to a complete reimplementation.
This finding provides empirical evidence for the importance of prior
studies on automatic code integration [4, 24, 105].

• In 12.5% of the studied files, developers reimplemented code based
on the idea of a Stack Overflow answer, which suggests that Q&A
platforms should consider to summarize key points that are discussed
in a post to give developers a quick overview of a question and its
answers.

• Developers reuse source code from non-accepted answers (26%) for
several reasons, such as the simplicity and performance of the source
code. Some developers even adopt answers that are total opposites
from what the original asker wanted but meet their needs. Hence,
Q&A platforms should consider to improve the way of organizing an-
swers, so that developers can find the most suitable answers based on
their requirements easily, such as voting on the different aspects (e.g.,
readability or performance) of answers or adding tags for answers.

To further understand the barriers that developers face when reusing
code and to collect suggestions for improving the code reuse process on
Q&A platforms, we conducted a survey of 453 open-source developers who
are also on Stack Overflow. We highlight our findings as follows:

• Slightly more participants prefer reimplementing source code
over reusing source code from Q&A platforms. The reasons
are the difficulty of having to make the code fit in their own
projects, and a low comprehension or low quality of the code
from Q&A platforms. These findings provide empirical evidence

42

for the importance of research on code integration and code compre-
hension, and highlight the need of providing code quality indicators
on next-generation Q&A platforms.

• 80% of the participants do not have a good understanding
of the licenses of the Q&A platforms. In addition, 57% of
the participants think that having more information about
the code license is important. These findings suggest that next-
generation Q&A platforms should make code licensing information
more visible to developers.

• The most popular suggestion category for improving code
reuse on next-generation Q&A platforms was code quality
(35% of the suggestions). We categorized the suggestions for next-
generation Q&A platforms into five categories: code quality, infor-
mation enhancement & management, data organization, license, and
human factor. A large part of the code quality suggestions were about
adding an online code validator (42.2%) and a detection mechanism
for outdated source code (29.7%).

In summary, the difficulty of fitting code in their own projects, a low
comprehension and a low quality of the code are the top barriers that
prevent developers from reusing code. Lacking a good understanding of
code license is also an important barrier for code reuse. Thus, future studies
are encouraged to address these barriers to better facilitate code reuse for
developers.

The rest of this chapter is organized as follows. Section 3.2 introduces
the background and related work of our study. Section 3.3 introduces our re-
search questions and describes our data collection process. Our exploratory
study is described in Section 3.4. Section 3.5 presents the survey design.
Section 3.6 summarizes and analyzes the survey results, and presents our
roadmap for next-generation Q&A platforms. Section 3.7 describes the
threats to validity. And finally, Section 3.8 concludes the chapter.

3.2 Background & Related Work

In this section, we give background information and discuss related work
about one of the most popular technical Q&A platforms, Stack Overflow.
We discuss Stack Overflow along four dimensions: leveraging knowledge,
understanding the quality of posts, source code reuse, and code licensing.

3.2.1 Leveraging Knowledge from Stack Overflow

Nowadays, technical Q&A platforms, with Stack Overflow being the most
prominent, have become an important way for researchers and practitioners

43

to obtain knowledge about and find solutions to their programming prob-
lems [1, 91, 104]. Developers are allowed to post questions, answer questions
and vote on questions or answers on Q&A platforms. When posting ques-
tions or answers, developers often attach snippets of source code to explain
their questions or answers along with the textual description. For example,
Figure 3.1 shows an example of an answer that contains source code on
Stack Overflow. The asker asked how to get the HTML of a selected object
with the jQuery library, and the answerer posted an answer that provides
a solution in the form of the attached source code.

During the process of asking and answering questions, Stack Overflow
accumulates a large amount of knowledge. To leverage the vast amount
of knowledge on Stack Overflow, several approaches have been proposed.
Treude and Robillard [89] presented a machine learning based approach,
SISE, to augment API documentation using answers on Stack Overflow.
Gao et al. [31] proposed an automated approach to fix recurring crash
bugs by leveraging information (e.g., questions with similar crash traces)
on Stack Overflow. Azad et al. [11] proposed an approach to extract API
call rules from version history and Stack Overflow posts. Chen et al. [20]
proposed an automatic approach to build a thesaurus that contains mor-
phological forms of software engineering terms. These studies make use of
the text and code information on Stack Overflow to automatically gener-
ate or enrich existing software artifacts and show promising results. Our
study is different from these studies as we are interested in studying how
developers utilize knowledge (i.e., source code) from Stack Overflow.

3.2.2 Understanding the Quality of Posts on Stack Overflow

Stack Overflow allows askers to mark at most one answer as the “accepted
answer” to indicate whether the answer meets their requirement (see Fig-
ure 3.1). Stack Overflow allows developers to upvote or downvote a post
(e.g., a question or an answer) to express whether the post is useful. The
total number of up and downvotes that a post receives is displayed as a
score next to the post. For example, the score of the question in Figure 3.1
is 673. In general, answers and questions with a high score are usually
regarded as high-quality ones.

Several studies have been done to investigate the quality of questions
and answers on Q&A platforms [69, 79, 91, 102]. Sillito et al. [79] performed
an empirical study on factors that make a good source code example on
Stack Overflow. They found that explaining important elements and pre-
senting a solution step-by-step make a good example. Treude et al. [91]
performed a study on Stack Overflow to explore which questions are an-
swered well and which ones remain unanswered. They found that source
code is an important factor for “code review” questions to get a good an-
swer. Ponzanelli et al. [69] studied the factors that potentially affect the

44

quality of questions on Stack Overflow. They showed that the attached
source code is an important factor for question quality. In this chapter we
study whether developers tend to reuse source code from a high-quality
answer (i.e., a high-voted answer).

Figure 3.1: An example of a question and its accepted answer on Stack
Overflow.

3.2.3 Source Code Reuse from Stack Overflow

Source code reuse can be commonly observed [6]. Listing 3.1 shows an
example of code reuse. This source code snippet, which is taken from a
GitHub project1, is reused from the Stack Overflow post shown in Fig-
ure 3.1.

To help developers reuse source code, several approaches have been
proposed. Rigby and Robillard [72] proposed an approach to extract code
elements from various documents such as Stack Overflow posts. They eval-
uated their approach on 188 Stack Overflow posts containing 993 code

1https://goo.gl/X84SFi

45

https://goo.gl/X84SFi

Listing 3.1: Source code reuse example.
1 //http://stackoverflow.com/questions/2419749/get-
2 // selected -elements -outer-html
3 jQuery.fn.outerHTML = function (s) {
4 return s
5 ? this.before(s).remove()
6 : jQuery("<p>").append(this.eq(0).clone()).html();
7 };

elements. Their technique achieved an average 0.92 precision and 0.90 re-
call. Ponzanelli et al. [66] proposed an Eclipse plugin named Seahawk
that helps developers search and import code snippets from Stack Over-
flow. Then they proposed an Eclipse plugin named Prompter which au-
tomatically searches and identifies Stack Overflow discussions, evaluates
their relevance based on the given the code context in the IDE, and notifies
the developer if a user-defined confidence threshold is surpassed [67, 68].
Armaly and McMillan [9] presented a novel reuse technique that allows pro-
grammers to reuse functions from a C or C++ program, by recording the
state of the dependencies during one program’s execution, and replaying
them in the context of a different program.

Different from prior studies which focused on proposing approaches to
retrieve code for developers to reuse, we are interested in studying how
developers utilize the source code from Q&A platforms and which barriers
they face when doing so.

3.2.4 Code Licensing on Stack Overflow

Understanding the license of a source code snippet is an important part of
code reuse. Developers need to adhere to certain licenses (e.g., MIT and CC
BY-SA 3.0) when reusing code from Q&A platforms. For example, devel-
opers may copy-and-paste source code from Stack Overflow posts into their
own projects as long as they adhere to the Creative Commons Attribute-
ShareAlike (CC BY-SA 3.0) license2, according to an official Stack Overflow
blog post [10]. One of the requirements of this license is that attribution is
needed from the developers by putting a link to the original Stack Overflow
post in their source code comments.

Significant number of studied have been performed on code licensing.
An et al. [6] studied whether developers respect license restrictions when
reusing source code from Stack Overflow in Android apps or vice versa.
With a case study of 399 Android apps, they found 232 code snippets
in 62 Android apps which were potentially reused from Stack Overflow,

2https://creativecommons.org/licenses/by-sa/3.0/

46

https://creativecommons.org/licenses/by-sa/3.0/

while 1,226 Stack Overflow posts contained code from 68 Android apps.
In total, An et al. [6] observed 1,279 potential license violations. Almeida
et al. [3] performed a survey among developers on open-source licenses
and found that developers struggle when multiple licenses were involved.
The results indicate a need for tool support to help guide developers in
understanding this critical information about the license that is attached
to software components. In this study, we would like to understand whether
developers are aware about the code license of Stack Overflow; if developers
are not, whether such unawareness forms a barrier for code reuse from Q&A
platforms for developers.

3.3 Research Questions & Data Collection

In this section, we present our research questions and their motivation. In
addition, we describe how we collected the datasets that we use to answer
our research questions.

3.3.1 Research Questions

We focus on the following five research questions. The first two research
questions are answered through an exploratory study on code reuse, in
which we collect empirical evidence about code reuse from Stack Overflow
in open-source projects. The last three research questions are answered
through a survey, in which we contact developers of open-source projects
who are active on Stack Overflow as well.

RQ1: To what extent do developers need to modify source code
from Stack Overflow in order to make it work in their own
projects?

Prior research has proposed several ways to utilize the source code
from Stack Overflow [66–68, 72]. For example, Ponzanelli et al. [66]
presented an approach to automatically construct queries from the
current context in the Eclipse IDE and retrieve relevant code and its
corresponding discussions from Stack Overflow. However, there is no
empirical evidence about the process of how developers are reusing
the source code, e.g., whether they copy-and-paste the original source
code without any modification or they need to modify it considerably.
Knowing how developers reuse source code from Q&A platforms will
give us insights on how to make source code reuse easier in next-
generation Q&A platforms.

RQ2: From which part of the Stack Overflow post does the
reused source code come?

47

Intuitively, we may expect that accepted answers, or answers with a
high score are the most useful. In this RQ, we study whether this in-
tuition is correct. In particular, we investigate why developers chose
to reuse code from non-accepted or low-scored answers. By under-
standing why developers chose non-accepted or low-scored answers,
we can provide insights to help Q&A platforms organize their answers
better so that developers can find solutions more easily.

RQ3: Do developers prefer reusing or reimplementing source
code?

Intuitively, reusing source code will consume less effort than reimple-
menting, especially if the source code is well-tested. In this RQ, we
survey developers about the correctness of this intuition. We also in-
vestigate which factors make developers prefer reimplementing source
code over reusing it.

RQ4: Is code license a barrier for code reuse for developer?

A prior study shows that the amount of code reuse from Q&A plat-
forms (i.e., Stack Overflow) is low (1.70%) [1]. One possible reason for
this low percentage is that developers might not attribute the Q&A
platforms from which a source code snippet comes (even though re-
quired by its license). Another possible reason is that some Q&A
platforms (e.g., Stack Overflow) have a relatively restrictive code li-
cense, which might hinder developers from reusing source code in their
own projects. Hence, in this RQ, we survey developers about their
knowledge and understanding of the code licenses of Q&A platforms,
to find out whether code license forms a barrier for code reuse from
Q&A platforms for developers.

RQ5: How can code reuse be improved in next-generation Q&A
platforms?

In this RQ, we elicit suggestions from the surveyed developers for im-
proving next-generation Q&A platforms. We analyze and synthesize
their suggestions to define a roadmap for researchers and developers
of next-generation Q&A platforms.

3.3.2 Data Collection

In the remainder of this section, we describe our data collection process for
the exploratory study (to answer RQ1 and RQ2) and our survey (RQ3–
RQ5). All our studied data and the corresponding analysis are available
from our online appendix [111].

48

4,878 source
files

Search with
keyword

“stackoverflow”
289 files

Filter out false
positives, small

projects and
duplicates

searchcode.
com

Figure 3.2: An overview of our data collection of the exploratory study.

Collecting Data for the Exploratory Study

The steps of our data collection process for our exploratory study on code
reuse from Stack Overflow in open-source projects (Section 3.4) are shown
in Figure 3.2. First, we collected source files that contain an explicit ref-
erence to a Stack Overflow post from searchcode.com [78], a source code
search website. Then, we removed irrelevant files such as false positives
and duplicate files.
Collecting Source Code Files from Open-Source Project Repositories: As
explained in Section 3.2.4, developers must cite a Stack Overflow post when
they reuse code or ideas from that post. Hence, to obtain source files that
contain a source code snippet that is reused from a Stack Overflow post
(either a question or an answer), we search for source files that contain at
least one hyperlink to a Stack Overflow post.

To search for such source files, we use searchcode.com [78] as our
search engine. searchcode.com has indexed over 20 billion lines of source
code from 7 million open-source projects. With its API [77], we were able
to collect 4,878 files in total using “stackoverflow” as the search keyword.
We focused on files that are written in the five most popular programming
languages on Stack Overflow [85] (JavaScript, Python, Java, PHP, and
Objective-C).
Removing Irrelevant Files: The “stackoverflow” keyword can match source
files that contain the “stackoverflow” keyword outside of a link to a post,
e.g., in an API name. We manually removed such false positives in this step.
In addition, not all projects in open-source repositories are interesting from
a software engineering point of view. For example, GitHub contains many
toy projects, from which we cannot extract knowledge that is representative
of other projects [47]. Therefore, to mitigate the effects from small projects,
we removed files that belong to projects with less than 1,000 commits and
10 contributors. We then removed the files that are duplicates of each
other (e.g., because they come from forked projects). Finally, we ended up
with 289 unique files, which belong to 182 open-source projects. Within
these files, 321 Stack Overflow hyperlinks were found. Figure 3.3 shows
the distribution of the studied Stack Overflow links over the five studied
programming languages.

49

69(21.5%)

115(35.8%)

21(6.5%)

68(21.2%)

48(15%)

0

30

60

90

120

Java JavaScript Objective C PHP Python

Program language

co
un

t

Figure 3.3: The distribution of the studied Stack Overflow links over the
five programming languages.

1.1% (5/453)

70.0% (317/453)

1.3% (6/453)
1.8% (8/453)
2.4% (11/453)

5.5% (25/453)

4.6% (21/453)

5.1% (23/453)
4.9% (22/453)

3.3% (15/453)

1
2
3
4
9
6
8
7
5

10+

0 100 200 300 400
Count of responses

S
.E

. e
xp

er
ie

nc
e

(y
ea

rs
)

Figure 3.4: Distribution of the software engineering experience of the par-
ticipants in years.

Collecting Participants for our Survey

We used the dataset provided by Vasilescu et al. [93] to get candidate partic-
ipants. This dataset includes 93,771 email addresses from the intersection
of users of GitHub and Stack Overflow. We took a random sample of 6,000
users from this dataset and sent them email invitations for our online sur-
vey. 1,935 of the emails did not reach the survey candidates because the
email address did not exist any more. In the end, we received 453 responses
which equals a response rate of 11.1%.

Figure 3.4 shows that 87.9% of the participants are experienced software
engineers with more than 5 years experience. Industrial, open-source, and
personal projects are the dominant project types that the participants are

50

73.5% (333/453)

72.6% (329/453)

77.7% (352/453)

20.3% (92/453)

7.5% (34/453)Other

Academic

Personal

Open Source

Industrial

0 200 400
Count of responses

Figure 3.5: Distribution of the types of projects that the participants are
working on.

involved in, followed by academic projects (see Figure 3.5). Note that a
participant can work on more than one type of project.

3.4 An Exploratory Study of Source Code Reuse
from Stack Overflow in Open-Source Projects

In this section, we present and discuss the results of our exploratory study
of 321 Stack Overflow links in 289 source code files of 182 open-source
projects. For each research question in our exploratory study, we discuss
the used approach and results.

3.4.1 RQ1: To What Extent Do Developers Need to Modify
Source Code From Stack Overflow in Order to Make
It Work in Their Own Projects

Approach: To understand how developers utilize source code from Stack
Overflow, we manually analyzed the collected source code and the refer-
enced Stack Overflow posts. We manually extracted and categorized the
type of code utilization from Stack Overflow posts for each collected source
file. We performed a lightweight open coding-like process [75, 76] for iden-
tifying the type of the code utilization. This process involved 3 phases and
was performed by the me and two research collaborators (i.e., P1–P3) of
this study:

• Phase I: P1 extracted a draft list of types of source code utilization
from Stack Overflow based on 50 source files and the linked Stack
Overflow post. Then, P1 and P2 use the draft list to categorize the
same source file collaboratively, during which the types were revised
and refined. At the end of this phase, we obtained five types of source
code utilization.

51

• Phase II: P1 and P2 applied the resulting types of Phase I to inde-
pendently categorize all 289 collected source files. They took notes
regarding the deficiency or ambiguity of the types for categorizing
certain source files.

• Phase III: P1, P2, and P3 discussed the coding results obtained in
Phase II to revolve the disagreements until a consensus was reached.
No new types were added during this discussion. The inter-rater
agreement of this coding process had a Cohen’s kappa of 0.91.

Table 3.1 shows the final categorization of the types of source code
utilization from Stack Overflow. In our study, one source code file-Stack
Overflow post pair could only be categorized as one type. We did not run
into conflicts because of this limitation.

52

Table 3.1: The identified types of source code utilization from Stack Overflow.

ID Name Definition Count Perc.

C1 Exact Copy Developers copy-and-pasted source code from Stack Overflow with-
out any modification.

66 20.5%

C2 Cosmetic Modification Developers copy-and-pasted source code from Stack Overflow with
modifications which do not alter the functionality of that source
code (e.g., renaming identifier names to make it more readable).

32 10.0%

C3 Non-cosmetic Modification Developers copy-and-pasted source code from Stack Overflow with
modifications which alter the functionality of that source code
(e.g., adding arguments to a function prototype).

69 21.5%

C4 Converting Ideas Developers did not copy-and-paste any source code from Stack Over-
flow. Instead, they wrote the source code from scratch by applying
the ideas in the answers.

40 12.5%

C5 Providing Information Developers did not reuse any source code from Stack Overflow. In-
stead, they treated the Stack Overflow post as an information
source related to the issue they are addressing.

114 35.5%

53

55.1% (38)

1.4% (1)

18.8% (13)

13.0% (9)

11.6% (8)

20.9% (24)

25.2% (29)

30.4% (35)

7.0% (8)

16.5% (19)

23.8% (5)

9.5% (2)

28.6% (6)

4.8% (1)

33.3% (7)

38.2% (26)

2.9% (2)

16.2% (11)

14.7% (10)

27.9% (19)

43.8% (21)

12.5% (6)

8.3% (4)

8.3% (4)

27.1% (13)

0%

25%

50%

75%

100%

Java Javascript Objective C PHP Python

Ty
pe

 o
f s

ou
rc

e
co

de
 u

til
iz

at
io

n

Category
C1: Exact Copy

C2: Cosmetic Modification

C3: Non−cosmetic Modification

C4: Converting Ideas

C5: Providing Information

Figure 3.6: The distribution of each type of source code utilization for each
of the studied programming languages.

Results: 31.5% of the reused source code was modified in one
way or another. Table 3.1 shows that 20.5% of the studied files reused
source code without modification (C1). In 31.5% (C2 and C3) of the files,
the source code required modification before it could be used. Type C4
(12.5%) indicates that it is not exceptional that developers converted the
ideas written in natural language to source code from scratch. Type C5
(35.5%) indicates that there exist developers who use Stack Overflow as a
“programming manual”. The finding that 31.5% of the source code reuse
required additional modification implies that finding the code is only the
first step for code reuse. More effort is needed to facilitate code reuse from
Q&A platforms after retrieving relevant code from them, such as making
the source code work in the required context. Prior studies have addressed
the problem of integrating source code in a target context automatically [4,
24, 105]. Our findings provide empirical support for the importance of such
studies, and suggest that it may be promising to integrate the proposed
code integration techniques into Q&A platforms.

In 10.0% of the studied files, developers make cosmetic modi-
fications when reusing source code, which may improve the read-
ability or simplicity of the source code. In the Cosmetic Modification
category, developers copy-and-paste the source code from a Stack Overflow
post and make modifications to the source code which may not be necessary

54

Listing 3.2: Source snippet from the project.3

1 hours = TimeUnit.MILLISECONDS
2 .toHours(elapsedTimeMilliseconds);
3 minutes = TimeUnit.MILLISECONDS
4 .toMinutes(elapsedTimeMilliseconds
5 - TimeUnit.HOURS.toMillis(hours));
6 seconds = TimeUnit.MILLISECONDS
7 .toSeconds(elapsedTimeMilliseconds
8 - TimeUnit.HOURS.toMillis(hours)
9 - TimeUnit.MINUTES.toMillis(minutes));

Listing 3.3: Source snippet from the Stack Overflow answer.4

1
2 final long hr = TimeUnit.MILLISECONDS.toHours(l);
3 final long min = TimeUnit.MILLISECONDS
4 .toMinutes(l - TimeUnit.HOURS.toMillis(hr));
5 final long sec = TimeUnit.MILLISECONDS
6 .toSeconds(l - TimeUnit.HOURS.toMillis(hr)
7 - TimeUnit.MINUTES.toMillis(min));

to make the source code work in the target project. In the example shown
in Listing 3.2 and 3.3, the developer copied three lines of source code in the
accepted answer from the Stack Overflow post and renamed the variable
name from hr, min, and sec to hours, minutes, and seconds, respectively.

In 12.5% of the files, developers wrote the source code from
scratch based on the descriptions of the algorithm. In the example
shown in Listing 3.4 and Listing 3.5, developers implemented a function to
detect whether a line intersects with a rectangle (Listing 3.4), based on an
answer from the Stack Overflow post shown in Listing 3.5.

Another example is shown in Listing 3.6 and 3.7, where the developers
wrote a regular expression that extracts all Youtube video ids in a string
(see Listing 3.6). This source code snippet was modified based on the source
code from the Stack Overflow post shown in Listing 3.7, which was written
in PHP. In this example, developers actually rewrote the regular expression
in JavaScript based on the PHP source code from the Stack Overflow post.
We categorized this file under the Converting Ideas type since developers

3https://goo.gl/9ouSz1
4https://goo.gl/74oVBu
5https://goo.gl/4ezMUr
6https://goo.gl/1Wn9vF
7https://goo.gl/HK5kyV
8https://goo.gl/eq1Dnk

55

https://goo.gl/9ouSz1
https://goo.gl/74oVBu
https://goo.gl/4ezMUr
https://goo.gl/1Wn9vF
https://goo.gl/HK5kyV
https://goo.gl/eq1Dnk

Listing 3.4: Type C5: An example of converting descriptions into source
code: source snippet from the project5 is implemented based on the de-
scription of the algorithm from Stack Overflow (see Listing 3.5).
1 Rect.prototype.collideLine = function(p1, p2) {
2 var x1 = p1[0];
3 var y1 = p1[1];
4 var x2 = p2[0];
5 var y2 = p2[1];
6
7 function linePosition(point) {
8 var x = point[0];
9 var y = point[1];

10 return (y2-y1)*x + (x1-x2)*y + (x2*y1-x1*y2);
11 }
12
13 var relPoses = [[this.left, this.top],
14 [this.left, this.bottom],
15 [this.right, this.top],
16 [this.right, this.bottom]
17].map(linePosition);
18
19 var noNegative = true;
20 var noPositive = true;
21 var noZero = true;
22 relPoses.forEach(function(relPos) {
23 if (relPos > 0) {
24 noPositive = false;
25 } else if (relPos < 0) {
26 noNegative = false;
27 } else if (relPos === 0) {
28 noZero = false;
29 }
30 }, this);
31
32 if ((noNegative || noPositive) && noZero) {
33 return false;
34 }
35 return !((x1 > this.right && x2 > this.right) ||
36 (x1 < this.left && x2 < this.left) ||
37 (y1 < this.top && y2 < this.top) ||
38 (y1 > this.bottom && y2 > this.bottom)
39);
40 };

56

Listing 3.5: Description of the algorithm in the Stack Overflow answer.6

1 Let the segment endpoints be p1=(x1 y1) and p2=(x2 y2).
2 Let the rectangle ’s corners be (xBL yBL) and (xTR yTR).
3
4 Then all you have to do is
5
6 A. Check if all four corners of the rectangle are on the
7 same side of the line. The implicit equation for a line
8 through p1 and p2 is:
9

10 F(x y) = (y2-y1)x + (x1-x2)y + (x2*y1-x1*y2)
11
12 If F(x y) = 0, (x y) is ON the line.
13 If F(x y) > 0, (x y) is "above" the line.
14 If F(x y) < 0, (x y) is "below" the line.
15
16 Substitute all four corners into F(x y). If they’re all
17 negative or all positive , there is no intersection. If
18 some are positive and some negative , go to step B.
19
20 B. Project the endpoint onto the x axis, and check if the
21 segment’s shadow intersects the polygon’s shadow. Repeat
22 on the y axis:
23
24 If (x1 > xTR and x2 > xTR), no intersection (line is to
25 right of rectangle).
26 If (x1 < xBL and x2 < xBL), no intersection (line is to
27 left of rectangle).
28 If (y1 > yTR and y2 > yTR), no intersection (line is
29 above rectangle).
30 If (y1 < yBL and y2 < yBL), no intersection (line is
31 below rectangle).
32 else, there is an intersection. Do Cohen-Sutherland or
33 whatever code was mentioned in the other answers to
34 your question.
35
36 You can, of course, do B first, then A.

Listing 3.6: Source snippet from the project in JavaScript.7

1 YOUTUBE_REGEXP: new RegExp(
2 ’(?:https?://)?’ + // Optional scheme. Either...
3 ’(?:www\\.)?’ + // Optional www subdomain
4 ’(?:’ + // Group host alternatives
5 ’youtu\\.be/’ + // Either youtu.be,
6 [...]
7 ’)’ // End negative lookahead assertion.
8),

57

Listing 3.7: Source snippet from the Stack Overflow answer in PHP.8

1 //Linkify youtube URLs which are not already links
2 function linkifyYouTubeURLs($text) {
3 $text = preg_replace(’~(?#!js YouTubeId Rev:...
4 # Match non-linked youtube URL in the wild...
5 https?:// # Required scheme...
6 (?:[0-9A-Z-]+\.)? # Optional subdomain.
7 (?: # Group host alternatives.
8 youtu\.be/ # Either youtu.be,
9 [...]

10 $text);
11 return $text;
12 }

cannot reuse the source code directly from another language, instead, they
have to convert the idea and rewrite it from scratch.

Developers used Stack Overflow posts in 35.5% of the files
as an information source for later reference. In 35.5% of the files,
developers did not reuse any source code from Stack Overflow. Instead, they
put a Stack Overflow hyperlink in their source code to provide background
information about the issue or solution. For example, there is a file9 in
which the developer gave a warning that the usage of dict can be dangerous
if multiple headers are set in the Set-Cookie header and the developer also
provided the link to the Stack Overflow post which discussed this issue in
the source code.

Developers are the most likely to reuse code or ideas in JavaScript.
Figure 3.6 shows the distribution of each type of source code utilization for
each studied programming language. We observe that code and idea reuse
was the highest in JavaScript (79.1% of the studied JavaScript files). One
possible explanation is that Stack Overflow provides an online running envi-
ronment for JavaScript, which may make developers more confident about
reusing code or ideas in JavaScript from Stack Overflow than in other lan-
guages.

31.5% of the reused source code required additional modification, which
shows the importance of studies on automatic code integration. In 12.5%
of the studied files, developers reimplemented code based on an idea,
which suggests that Q&A platforms should consider to summarize the
key points that are discussed in a post to give developers a quick view of
the question and its answers.

9https://goo.gl/KKbPWk

58

https://goo.gl/KKbPWk

Table 3.2: Where does the reused source code come from?

Source HV* NHV**Total Perc.

Accepted Answer 144 11 155 48%
Non-Accepted Answer 35 48 83 26%
Question - - 5 2%
NOT REUSE - - 78 24%

Total - - 321 100%
* Highest-voted answers
** Non-highest-voted answers

3.4.2 RQ2: From Which Part of the Stack Overflow Post
Does the Reused Source Code Come?

Approach: We manually inspected from which part (e.g., accepted answer,
non-accepted answer, or question) of the Stack Overflow post the reused
source code originates. We also check whether the answer is the highest-
scored one. Two of the collaborators manually examined each source code
file and the linked post (including the question, all answers, and all com-
ments to the answers) individually and categorized it. Discrepancies were
discussed until a consensus was reached. The discrepancies were due to
the difficulty of identifying the exact answer that was reused (in particu-
lar, when only the idea of a code snippet was reused). After identifying
the reused answer, the categorization was straightforward. The inter-rater
agreement of this categorization had a Cohen’s kappa of 0.85.

Results: In 26% of the studied files developers chose a non-accepted
answer and in 58%, those non-accepted answers were not the
highest-scored ones. The results of the categorization are shown in Ta-
ble 3.2. As we can see from the results, not all reused source code came
from an accepted answer. In 48% of the studied files, developers chose
source code from an accepted answer. However, there are still a consider-
able number (26%) of files where developers choose the source code from
non-accepted answers. Moreover, among those non-accepted answers, 58%
were not the highest-scored ones, which indicates that developers certainly
did not always choose source code from the accepted or highest-scored an-
swer. In the remainder of this section, we discuss the situations in which
developers reused source code from a non-accepted answer in more detail.

Different Requirements than the Question Asker

10https://goo.gl/Z1pRMS

59

https://goo.gl/Z1pRMS

Listing 3.8: Source snippet in the project that implements a method to
generate GUIDs.10

1 // http://stackoverflow.com/questions/105034/how-to-
2 // create-a-guid-uuid-in-javascript
3 function generateID() {
4 return "avalon"
5 + Math.random().toString(36).substring(2, 15)
6 + Math.random().toString(36).substring(2, 15)
7 }

Listing 3.9: Source snippet in the accepted answer on Stack Overflow.12

1 function guid() {
2 function s4() {
3 return Math.floor((1 + Math.random())
4 * 0x10000).toString(16)
5 .substring(1);
6 }
7 return s4() + s4() + ’-’ + s4() + ’-’ + s4()
8 + ’-’ +s4() + ’-’ + s4() + s4() + s4();
9 }

Description: Developers chose source code from a non-accepted answer
because they had different requirements than the original question asker.

Example: A developer wanted to implement a method to generate GUIDs.
The source code in this example is shown in Listing 3.8. This source code
snippet is actually from a non-accepted answer11 on Stack Overflow which
has 37 votes, while the accepted answer has 1290 votes. The source code
provided by the accepted answer is shown in Listing 3.9.

According to the description in the answer that contains the source
code, the algorithm in Listing 3.8 is simpler and has very good performance,
but not compliant with the RFC 4122 standard. The author of this answer
also attached a performance test result in which several algorithms that are
mentioned in other answers of the Stack Overflow post are compared, which
shows that the algorithm in Listing 3.8 outperforms the others. Hence,
one possible explanation is that the developer who adopted this low-scored
answer prioritizes performance and simplicity over other factors, such as
whether the generated result is compliant with a standard.

11https://goo.gl/aC4auZ
12https://goo.gl/xpAcga

60

https://goo.gl/aC4auZ
https://goo.gl/xpAcga

Fixing Bugs

Description: Developers adopted source code that improves on the ac-
cepted answer (e.g., by fixing a bug, handling additional cases).

Example: A developer was looking for a method to draw a dashed line
around a selection area in JavaScript13. The non-accepted answer14 im-
proves the accepted answer by utilizing the built-in transformation func-
tionality of Canvas, and also handles special cases where the line is vertical,
which was not addressed in the accepted answer.

Improving Speed

Description: Developers adopted source code with a better performance.

Example: A developer was looking for an algorithm that sorts an array
by the Levenshtein Distance in JavaScript. According to the comments
below the accepted answer, the implementation in the accepted answer
performed better than the one provided by the original asker. However, a
non-accepted answer provided an improved version of the accepted answer
which was described as “Most speed was gained by eliminating some array
usages”, which was reused by the developers in their project. Thus we
believe this developers gave performance a higher priority.

Unsurprisingly, we found that developers have different requirements
for their solutions. Even if answers that are provided in the post do not
meet the requirements of the asker, other developers may find them useful
(e.g., a solution with higher performance). For developers who are looking
for solutions on Stack Overflow, it is better to go through all the answers
of a relevant question instead of focusing on the accepted answers. Q&A
platforms should improve the way of organizing answers, so that developers
can find the most suitable answers based on their requirements faster. For
example, Q&A platforms may allow users to vote on different aspects, such
as the readability or performance of the source code in an answer. The
results from our user survey confirm the need for this improvement (see
Section 3.6.2).

Developers reused code from a non-accepted or low-scored answer for
various reasons, such as the simplicity and performance of the source
code. Some even reused code from an answer that delivered a total
opposite from what the asker wanted. Hence, Q&A platforms should
improve the way in which answers are organized, so that developers can
find the most suitable answers based on their requirements easily.

13https://goo.gl/gzMCgy
14https://goo.gl/8foVXq

61

https://goo.gl/gzMCgy
https://goo.gl/8foVXq

3.5 A Survey on Code Reuse from Stack Overflow

Survey Design: Two of the research collaborators posited the survey ques-
tions that cover the three research questions (see Section 3.3.1). The third
research collaborator checked the questions to eliminate any ambiguity from
the wording of the survey. Before sending the survey to the 6000 partic-
ipants that we collected in Section 3.3.2, we sent a draft version of the
survey to 20 participants (excluded from the 6000 participants). We re-
ceived feedback from seven of them, and refined the survey based on this
feedback. The questions in the survey are available in the Appendix. The
survey is divided into three parts:

1. Demography (Q1 - Q7): these questions collect information about
the software engineering background of the participants.

2. Barriers (Q8 - Q17): these questions collect information about
the barriers that the participants face when reusing source code from
Q&A platforms. We included only the responses from participants
who have ever reused source code from Q&A platforms (i.e., those
who answered yes to Q7, which were 380 (83.9%) participants).

3. Suggestions (Q18 - Q19): these questions collect suggestions for
next generation Q&A platforms. Every participant could answer
these two questions, regardless of whether they ever reused source
code from Q&A platforms.

Data Analysis: The responses of the survey are available in our online
appendix [111]. The survey contained 12 open-ended questions in which
participants could choose to input their own responses in free-form text.
For each of these questions, we used an open coding-like approach to let
the coding schema emerge during the analysis [37]. We adopted a three
phase coding process:

• Phase I: two of the research collaborators (P1 and P2) coded the
responses of each open-ended question individually. As a result, both
P1 and P2 had their own set of codes for the answers. Then, P1 and
P2 discussed their draft code schema and made a revised version of
the code schema.

• Phase II: P1 and P2 used the revised schema to code the answers.
Then, they discussed and resolved conflicts. We use Cohen’s Kappa [21]
to measure the level of agreement. Values < 0 are characterized as
indicating no agreement and 0âĂŞ0.20 as slight, 0.21âĂŞ0.40 as fair,
0.41âĂŞ0.60 as moderate, 0.61âĂŞ0.80 as substantial, and 0.81âĂŞ1
as almost perfect agreement. The Cohen’s Kappa value for our cod-
ing result was 0.92, which indicates an almost perfect agreement. As

62

5.3% (20/380)
1.8% (7/380)

25.0% (95/380)
15.0% (57/380)

33.2% (126/380)
29.2% (111/380)

35.5% (135/380)
52.6% (200/380)

1.1% (4/380)
1.3% (5/380)

Daily

Weekly

Monthly

Less frequent than monthly

Not sure

0 100 200 300
Count of responses

Type
Reimplement

Reuse

Figure 3.7: Comparison of frequency of reusing and reimplementing source
code.

a result, a unified coding schema was developed and applied to all the
answers.

• Phase III: three of the research collaborators (P1, P2 and P3) dis-
cussed the coding results obtained in Phase II to revolve disagree-
ments until a consensus was reached. The interrater agreement of
this coding process had a Cohen’s Kappa of 0.79, which indicates a
moderate agreement.

We answer RQ3 and RQ4 in the remainder of this section and RQ5 in
Section 3.6.

3.5.1 RQ3: What Are the Preferences of Developers When
It Comes to Reusing Code?

Developers reimplement source code slightly more frequently (i.e.,
for daily, weekly, and monthly cases) than that they reuse source
code. Figure 3.7 shows the comparison of frequency of reimplementing
source code and reusing source code from Q&A platforms. The number of
participants who reimplement source code monthly (33.2%) and those who
reuse source code monthly (29.2%) are close, while the difference increases
to 25.0% vs. 15.0% at a weekly frequency.

A majority of developers (65%) prefer reimplementing source
code, due to the code modification that is required to make the
code from the post work in their own project. Table 3.3 shows the
reasons for choosing reimplementation over the reuse of source code. The
top reason that makes developers prefer reimplementing source code is the
code modification that is required to make the code from the post work in
their own projects. This finding is consistent with our finding in RQ1 (i.e.,
most code needs modification before reusing) and also provides empirical

63

Table 3.3: Reasons for choosing reimplementing over reusing source code.
(Multi-selection allowed, hence the sum of the percentages is larger than
100%.)

Category Description Perc.

Context The code should be written according to its
context.

65%

Comprehension Do not understand the source code to be
reused.

44%

Quality The quality of the source code is too low. 32%
Time consuming Reusing source code takes more time. 17%
Other Other reasons. 7%

evidence for the importance of research on code integration. Several studies
have been done on automatically retrieving and integrating code in a user’s
project context [4, 28, 105]. However, these approaches are not widely
adopted by developers. Future studies should investigate which factors
prevent such tools from being applied in practice.

Code comprehension ranks as the second most important reason that
preferring reimplementation over code reuse. This finding is in line with the
work by Xin et al. [113], which showed that developers spend 58% of their
time on program comprehension activities. Hence, next-generation Q&A
platforms should investigate how to improve comprehension of the source
code in a post to facilitate its reuse. Approximately one-third (32%) of
the participants complained about the low code quality on Stack Overflow,
which highlights the need for next-generation Q&A platforms to improve
or verify the code quality of source code snippets.

An interesting observation was that 17% of the participants stated
that reusing source code takes more time than reimplementing it, which
is against the common wisdom. One possible reason is that if the source
code snippet is large or complex, it could take more time to comprehend it
than to make it work in another context.

Developers reimplement source code slightly more frequently than that
they reuse source code. The primary reason is that it would take longer
to adapt the source code to work in their own projects, than to sim-
ply reimplement it. Our observations provide empirical evidence for the
importance of research on automated code integration and code compre-
hension, and highlight the need of improving the quality of code snippets
on next-generation Q&A platforms.

64

21.1% (80/380)

32.9% (125/380)

30.5% (116/380)

11.8% (45/380)

3.7% (14/380)

Yes (fully understand)

Yes (a little)

No (want to know more)

No (do not care)

Other

0 50 100 150 200
Count of responses

Figure 3.8: Participants’ awareness of the licenses of Q&A platforms.

3.7% (14/380)

8.4% (32/380)

39.2% (149/380)

30.8% (117/380)

17.9% (68/380)

Strongly disagree

Disagree

Not sure

Agree

Strongly agree

0 50 100 150 200 250
Count of responses

Figure 3.9: Participants’ opinion about license compatibility between Q&A
platforms and their projects.

3.5.2 RQ4: Is Code License a Barrier for Code Reuse for
Developers?

In 75.2% of the cases, participants do not have a good under-
standing of the license terms of Q&A platforms, which indicates
that there may be license violation issues when developers reuse
source code from Q&A platforms. Figure 3.8 shows the results of par-
ticipants’ awareness of the licenses of Q&A platforms. An et al. [6] studied
code reuse on Android apps and observed 1,279 potential license violation
cases where developers reused source code from Q&A platforms in Android
apps, or vice versa. Our survey results give a possible explanation for such
violations. The “Other” category in Figure 3.8 includes cases in which the
participants did not give a concrete answer, e.g., “Depends on the platform.
Stack Overflow is attribution-required, but the requirements of most other
sites are vague or not generally known.”

In 39.2% of the cases, participants are not sure whether the
license of a Q&A platform is compatible with that of their own
project. Figure 3.9 shows that an additional 12.1% of the participants
(strongly) disagrees that the license of a Q&A platform is compatible with

65

6.6% (25/380)

12.1% (46/380)

23.9% (91/380)

27.1% (103/380)

30.3% (115/380)

Very unimportant

Unimportant

Not sure

Important

Very important

0 50 100 150 200
Count of responses

Figure 3.10: Importance of having more information on license.

that of their own project. Hence, 51.3% of the participants may experience
difficulties (or cause a violation) when reusing code from Q&A platforms
due to their license. These difficulties were noticeable from the survey
responses when the participants were asked why they preferred reimple-
menting over reusing source code. For example, one participant mentioned
that “licensing is sometimes an issue.”.

More than half of the participants (57.4%) think that having
more information about the code license is (very) important (see
Figure 3.10). Together with the finding that most participants do not
have a good understanding of the code license of Q&A platforms, these
findings reveal a need for clearer information about the code license of
Q&A platforms.

Generally speaking, participants did not have a good understanding of
the code license on Q&A platforms. More than half of the participants
believed that, or were unsure whether, there exist incompatibilities be-
tween the code license of their own project and Q&A platforms. Almost
60% of the participants thought that Q&A platforms should give more
information about their code license. Based on these observations, next-
generation Q&A platforms should have clearer license information and
make that information more visible to developers.

3.6 A Roadmap for Next-Generation Q&A plat-
forms

In this section, we summarize and analyze the results for RQ5 (How can
code reuse be improved in next-generation Q&A platforms?). In total, we
collected 150 responses for Q19 in the survey. 22 of these responses were not
actually suggestions for next-generation Q&A platforms (e.g., “Not much,
quite happy with Stack Overflow.”) and were excluded from the follow-
ing analysis. Each response can contain multiple suggestions. In total,

66

we extracted 183 suggestions from the responses. Using our open coding-
like approach (see Section 3.5), each suggestion was categorized into one
of these five categories: code quality, information enhancement & man-
agement, data organization, license, and human factors. We categorized
suggestions that did not fall into one of these categories into a sixth “other”
category. We highlight the findings and discuss implications on future re-
search of next-generation Q&A platforms of each category in the remainder
of this section.

67

Table 3.4: The categorization of code quality suggestions — 64 out of 183 (35.0%).

Category Description (D) – Example (E) Perc. Count

Integrated validator D: Integrated validator that can test the code snippets on Q&A platforms.
E: “An inbuilt REPL environment for as many languages/environments as pos-
sible.”

42.2% 27

Outdated code D: Answers (including source code) on Q&A platforms suffer from out-of-date
problems. Participants are seeking for a solution to this problem.
E: “make date important in marking outdated code, and deprecate those snippets
via the community”

29.7% 19

Answer quality D: Classifier that helps distinguish high and low quality answers.
E: “Better support for answers that are good, but out of date.”

17.2% 11

Code review D: Integrated code review tool that helps improve the code quality.
E: “In-browser code review and commenting similar to that provided by commercial
code review tools.”

10.9% 7

68

3.6.1 Suggestions on Code Quality

Next-generation Q&A platforms should integrate mechanisms for
online code validation and detecting outdated code. Code quality
is the most popular type of suggestion (35.0%) from the participants. Ta-
ble 3.4 shows the categorization of the suggestions that participants made
on improving the code quality on Q&A platforms. The two most impor-
tant suggestions from developers on improving code quality were adding (1)
an integrated validator (27 participants) that can test source code online
and (2) an outdated code detection mechanism (19 participants) that can
identify code for old software versions.

An integrated validator is a convenient way of testing source code snip-
pets online to ensure the quality of the source code. Participants described
such a tool for example as follows: “The ability to interact with and run the
code examples written in answers and questions”. Several Q&A platforms
have started to integrate online validation into their websites. For exam-
ple, Stack Overflow can validate three web-languages: HTML, CSS, and
JavaScript [84]. However, Stack Overflow does not support online valida-
tion of other languages, such as Java and C++, which are also very popular
on Stack Overflow. There are several challenges when it comes to online
validation of all languages.

One of the biggest challenges is to make an incomplete code snippet run
correctly, since code snippets on Q&A platforms are usually not minimal
working examples (MWEs). Often the answerer only needs to implement
the core part of a solution and may leave out necessary context information
(e.g., the required software version). To address this problem, prior studies
have proposed several approaches to extend incomplete code snippets (not
limited to those on Q&A platforms) into compilable ones based on program
analysis and machine learning techniques [65, 70, 100]. However, none of
these approaches can guarantee the correctness of the extended code. For
example, there is a function called “foo” in a code snippet. To make this
code snippet compilable, Q&A platforms need to infer where this function
comes from and then import the corresponding library. However, it is
difficult to automatically infer the exact library based on the source code
snippet only. This problem may be solvable in Q&A platforms by leveraging
the description that comes with the source code. Hence, future research
should investigate whether the description of the source code can be used
to improve the correctness of the automatic code extension.

Providing an outdated code detection mechanism is the second most
popular suggestion in the code quality category. Many of the participants
mentioned that source code on Q&A platforms is often outdated and not
suitable for current technologies or situations. For example, one partici-
pant suggested: “Have explicit mechanisms for dealing with content that
goes out of date due to platform or language changes.” Some participants

69

suggested a mechanism that clarifies the API version of the source code:
“Clear associates between the code snippets the versions of the API under
which it will work. This is particularly when working with APIs that change
frequently, like iOS and Unity.” Some also suggested deprecating outdated
answers: “Make date important in marking outdated code, and deprecate
those snippets via the community.” This problem was recognized by vari-
ous developers on Stack Overflow [52] and received wide attention from the
Stack Overflow communities.

However, as far as we know, no existing study has investigated out-
dated source code or solutions on Q&A platforms so far. Hence, there is a
need for future research on developing mechanisms to deal with outdated
source code or solutions. There are two primary directions to deal with out-
dated code or solutions. First, future studies should propose approaches
to automatically identify outdated source code or solutions in Q&A plat-
forms. Second, future research should investigate how incentive systems
can motivate communities to identify and update outdated source code or
solutions.

70

Table 3.5: The categorization of information enhancement & management suggestions — 43 out of 183 (23.5%).

Category Description (D) – Example (E) Perc. Count

Answer tagging D: Better tagging-like information system for answers.
E: “Provide/require tagging of the version number(s) of the language [...]”

37.2% 16

Code evolution D: Better management of the evolution/revisions of code snippets.
E: “where does the code come from and copied to, and also the revisions inside
the platform.”

14.0% 6

Resources linking D: Q&A platforms should suggest for other resources (e.g., books, API doc-
uments, libraries etc.)
E: “Books suggestions based on questions.”

11.6% 5

Answer writing support D: Support for writing better questions/answers.
E: “[...] it would be nice if it would be easier to ask a good question [...]”

9.3% 4

Other D: Other aspects of information enhancement & management.
E: “Built in support within an IDE to make it faster to get the answer you
are interested in.”

27.9% 12

71

3.6.2 Suggestions on Information Enhancement & Manage-
ment

Next-generation Q&A platforms should allow tagging for answers.
Information enhancement & management (23.5%) is the second most pop-
ular suggestion for developers on Q&A platforms. Table 3.5 presents the
results of suggestions related to information enhancement and management.
Based on the observations, future studies should focus on recommending
the tagging-like information for answers. These recommendations could be
made automatically using, e.g., machine learning techniques [99, 101, 122],
or aspect-mining techniques [56, 97, 109, 116, 121].

72

Table 3.6: The categorization of data organization suggestions — 21 out of 183 (11.5%).

Category Description (D) – Example (E) Perc. Count

Code searching/indexing D: Support for easier code search.
E: “Source Code indexing for easier retrieval. It could also give the possibility
to find example of usage functions.”

47.6% 10

Duplicate posts D: An automatic way of clustering duplicate questions/answers.
E: “Auto-suggest similar questions, particularly for questions that don’t have
answers.”

38.1% 8

Comments D: Support on utilizing the comments of posts.
E: “Code in *comments* must be expressed better, than on Stack Overflow.”

14.3% 3

73

3.6.3 Suggestions on Data Organization

Next-generation Q&A platforms should better organize their data,
for example by providing a better searching and indexing mech-
anism and better duplicate detection. As shown in Table 3.6, ten
participants suggested that Q&A platforms should have a better way to
index and search code. For example, one of the participants mentioned:
“Ability to search questions based on the version of the framework or lan-
guage I’m working with”. Eight participants suggested that Q&A platforms
should have an automatic way to detect duplicate or similar posts and be
organized in a better way. Three participants suggested to improve the
utilization of the comments on posts.

In prior studies [12, 57, 62, 78, 98], researchers have studied code search
engines to help developers to improve their search efficiency on source code.
Our findings support these studies, and it would be interesting to integrate
such code search engines into Q&A platforms.

Researchers proposed various approaches to help Q&A platforms detect
duplicate questions automatically [2, 106, 119, 120]. The common way
to identify duplicate questions is to measure such questions’ similarity in
terms of semantic meaning. Recently, deep learning has proven its power of
capturing semantic meaning from natural language in several studies [16,
19, 30, 53]. Hence, future research could consider to employ deep learning
to detect duplicate or find similar questions.

74

Table 3.7: The categorization of code license suggestions — 23 out of 183 (12.6%).

Category Description (D) – Example (E) Perc. Count

Clearer license D: Q&A platforms should make their license terms clearer.
E: “By far the most important requirement is clear licensing. Much of the code
provided on such platforms is not currently usable because the license is unclear.”

69.6% 16

Permissive license D: Q&A platforms should use a more permissive license.
E: “Let the user choose a more re-user-friendly license (e.g. copy without refer-
ence).”

30.4% 7

75

3.6.4 Suggestions on Code License

Next-generation Q&A platforms should make their code licens-
ing information clearer and more visible. In 12.6% of the cases,
participants suggested to improve license-related issues, in particular to
make the license more clear (16 participants). This percentage is in line
with our earlier finding that 75.2% of the participants did not have a good
understanding of the license terms of Q&A platforms (see Section 3.5.2).
Table 3.7 shows the suggestions about the code license of Q&A platforms.

Participants requested that Q&A platforms provide a clearer explana-
tion of their license terms: “By far the most important requirement is clear
licensing. Much of the code provided on such platforms is not currently us-
able because the license is unclear.” If developers would neglect the license
of Q&A platforms and reuse source code from these platforms, they are
under the risk of license violation which may cause legal problems later.
The scale of license violation has been studied by [6]. An et al. [6] inves-
tigated code reuse in Android apps and observed a significant number of
potential license violation cases when developers reused source code from
Q&A platforms in Android apps, and vice versa.

Seven participants suggested that Q&A platforms should use a more
permissive license, which has fewer restrictions on source code reuse. In
the example of Stack Overflow, CC BY-SA 3.0 was the original license
for the source code on this platform. CC BY-SA 3.0 is a copyleft (non-
permissive) license which requires the derivative work to be licensed under
the same license (CC BY-SA 3.0). This means that when developers reuse
the source code from Stack Overflow into their projects, they have to license
these projects under the CC BY-SA 3.0 license as well. Otherwise, they
are under the risk of license violation.

It is also worth noting that, although Stack Overflow has announced this
license change in a post on Stack Exchange [82], the change is not reflected
on their homepage [86], which still says “user contributions licensed under cc
by-sa 3.0 with attribution required.” As such mismatches will further deepen
developers’ misunderstanding of license terms. Therefore, we suggest that
next-generation Q&A platforms explicitly describe their license terms for
source code reuse in a consistent manner.

76

Table 3.8: The categorization of human factor suggestions — 19 out of 183 (10.4%).

Category Description (D) – Example (E) Perc. Count

Better curator D: Better curators are needed to help improve the quality of the posts.
E: “Definitely curators for specific languages to rate answers in specific areas.”

63.2% 12

Gamification-related D: Suggestions on improving the gamification system of Q&A platforms.
E: “Base reputation on number of answers up-voted by others, not on personal
activity.”

36.8% 7

77

3.6.5 Suggestions on the Human Factor

Next-generation Q&A platforms should assign human experts to
curate knowledge on the platform. In 10.4% of the cases, participants
suggested to improve Q&A platforms in terms of the human factor. Ta-
ble 3.8 shows that twelve participants suggested to have better curators to
improve the quality of posts and help with marking good answers. One par-
ticipant suggested: “Pay some vetted, experienced developers to check the
answers, instead of relying on gamification.” Another suggestion empha-
sized the importance of collaboration within the community: “Arriving at
a ’most correct’ solution should be a more collaborative effort with a clearly
shown path of how it was arrived at by multiple people, not necessarily just
one user who takes all the credit.” Zagalsky et al. [117] revealed a shift
within the R community from knowledge creation to knowledge curation.
Hence, we suggest that next-generation Q&A platforms study other com-
munities to improve the knowledge curation and collaboration processes.

Seven participants suggested to improve the gamification system of
Q&A platforms. The usage of gamification on Q&A platforms has been
proven effective before [7, 18]. However, participants revealed several flaws
in this system. For example, one participant wrote: “Base reputation on
number of answers up-voted by others, not on personal activity. (Stack
Overflow has too many nit-pickers gaining reputation by down-voting legit-
imate questions.)”

Our findings suggest that future studies on how to improve the gamifi-
cation mechanism of Q&A platforms are necessary.

78

Table 3.9: The categorization of other suggestions — 13 out of 183 (7.0%).

Category Description (D) – Example (E) Perc. Count

Open source D: Open sourced/community-hosted Q&A platforms.
E: “Open source to be competitive, self-hosted and easy to deploy (even without requiring
docker or similar, to be usable in low end containers or even in hosting platforms).”

30.8% 4

AI D: Include AI-related techniques into the Q&A platforms.
E: “Let AI write code, we do code review.”

23.0% 3

Other D: Cross-language support. Q&A platforms.
E: “When the clone is written in a different language, a language translation is automat-
ically performed if not with some manual assistance”

46.2% 6

79

3.6.6 Other Suggestions

Table 3.9 shows the 13 suggestions that did not fall into the other categories.
There were four suggestions that suggested that Q&A platforms are open-
sourced. In addition, there were three suggestions that were related to AI
techniques. For example, one of them suggested the use of an AI technique
that can automatically produce source code while developers only need to
review the source code. These suggestions support the current research
on code generation, in which tools are developed to automatically generate
code based on a natural language input [41, 115]. The rest of the suggestions
in the “other” category talk about different topics. For example, one of them
suggests the integration of a tool that can automatically translate a source
code snippet across programming languages.

In summary, based on the findings from our survey, we observe that the
difficulty in fitting code in their own projects, a low comprehension and
low quality of the code are the top barriers that prevent developers from
reusing code. Lacking a good understanding of the code license is also a
significant barrier for code reuse. Thus, future studies are encouraged to
address these barriers to better facilitate code reuse for developers.

3.7 Threats to Validity

External validity. Threats to external validity relate to the generalizabil-
ity of our findings. In this study, we used searchcode.com as our search
engine and found 4,878 source files in total that contained links to Stack
Overflow posts. After removing the small projects and duplicate files, there
were 321 Stack Overfow links and 289 files left. The number of files may
not be large enough to represent all the cases in the real world. The reason
for restricting our study to these 321 Stack Overflow links is that we want
to ensure that we study code reuse in serious software projects only. [47]
showed that many open source projects are toy projects which do not ade-
quately reflect software engineering practices. Hence, when studying open
source projects, it is important to ensure those toy projects are removed
from the data set. We ensure that such projects are removed by imposing
strict selection criteria on our data (i.e., we only study files from projects
that have at least 1000 commits and 10 contributors). We are confident
that the studied number is large enough for our exploratory study to iden-
tify the core issues that are involved in the process of code reuse from Q&A
platforms.

For the survey, we only invited developers who are in the intersection of
users of GitHub and Stack Overflow. Hence, our results may not generalize
to software developers who are not in this intersection, such as developers

80

of closed-source software. Future studies should extend our exploratory
study and survey to developers from other domains.

We focused the first part of our study on the five most popular program-
ming languages, and as a result, our findings may not generalize to other
languages. Future work is necessary to investigate whether our findings
hold for other languages.

Most of our findings are general in nature and seem to apply to code
reuse in general. However, as we have no solid evidence, we cannot make
definite claims about the generalizability of our findings outside Q&A plat-
forms. Future studies should investigate whether our findings are valid
outside Q&A platforms.

Internal validity. Threats to internal validity relate to the experimenter
bias and errors. In this chapter, we heavily rely on manual analysis. For ex-
ample, we manually inspected the source code in the projects and in Stack
Overflow posts, we manually categorized each case of how developers are
reusing the source code, and we manually categorized the survey responses.
Unfortunately, these tasks are extremely difficult to automate. For exam-
ple, it is very hard to automatically identify the Non-cosmetic Modification,
Converting Ideas, and Providing Information types. Latent Dirichlet allo-
cation (LDA) will not work because LDA heavily relies on the similarity
of the used terminology in two files. In the aforementioned types, the used
terminology across two files tends to be different. Other techniques, such
as clone detection techniques cannot capture the Non-cosmetic Modifica-
tion, Converting Ideas, and Providing Information types either. Hence, we
had no option other than to perform our analysis in a manual fashion. To
mitigate the threat of bias during the manual analysis, two of the research
collaborators conducted the manual analysis and discussed any conflicts
with a third research collaborator until a consensus was reached. We used
Cohen’s kappa [42] to measure the inter-rater agreement. The kappa val-
ues ranged from 0.79 to 0.92, which implies a high level of agreement. In
addition, to improve the replicability of our study, we made our studied
data and results (including the coding results of our exploratory study and
survey) available in our online appendix [111].

Another threat is that our findings in RQ2 may not exactly reflect
the intent of a user who reused code from Stack Overflow, since the code
provided in the post to which the link points may not exactly be what the
developer needs. To mitigate this threat, we tried contacting the developers
about their intent, but received no response.

Construct validity. A threat to the construct validity of this study is that
we used mostly closed-ended questions in our survey, which may affect the
richness of the responses collected from participants. However, open-ended
questions have several disadvantages [71]: (1) Open-ended questions take

81

much longer for participants to fill out, making it more likely that they do
not fill out the survey at all. (2) Open-ended questions have the problem of
missing data, i.e., participants skipping or doing a poor job at answering a
question (i.e., by giving an incomplete or invalid answer). (3) Open-ended
questions are much more difficult to code than closed-ended questions. We
felt that for most of our survey, the advantages of closed-ended questions
outweighed the disadvantages. Therefore, we chose to use mostly closed-
ended questions, together with an “Other.” field. Another threat is that
Question 18 (see the appendix for details) could influence the participants’
answer to Question 19. We used Question 18 as an “icebreaker”, so that the
participants could start their thought process from there. Future studies
should consider this effect when performing user surveys.

3.8 Conclusion of This Chapter

Prior studies on code reuse from Q&A platforms have focused on locating
and integrating source code in a required context automatically. However,
no studies have been done on how developers utilize source code from Q&A
platforms. In this chapter, we studied how developers reuse code from Q&A
platforms and we identified the barriers that they faced during the code
reuse process. The most important findings of our study are:

1. Our exploratory study shows that 78.2% of the reused source code
from Stack Overflow had to be modified in order to work in the re-
quired context. The required modification ranged from simple refac-
toring to a complete reimplementation.

2. Developers reuse source code snippets from non-accepted answers as
well (26% of the studied cases).

3. Developers prefer reimplementing source code over reusing source
code because of the difficulty of integrating the code into their own
project, and low comprehension or low quality of the code.

4. The most suggested improvements for next-generation Q&A plat-
forms are about improving the quality of source code snippets.

5. Many developers do not understand, or do not seem to care much
about the code license of Q&A platforms.

Our study shows that Q&A platforms are evolving beyond their tra-
ditional use of asking and answering questions. From our survey, we can
conclude that code reuse from Q&A platforms is a real challenge for de-
velopers: judging by the suggestions that we extracted from the survey,

82

many developers face similar barriers during the code reuse process. Next-
generation Q&A platforms should integrate existing solutions that improve
the quality, comprehension and organization of source code snippets to
better facilitate code reuse. Researchers can leverage the roadmap that is
presented in this chapter to remove many of these barriers in code reuse.

83

84

Chapter 4

Conclusion and Future Work

4.1 Conclusion

This dissertation presented our studies on the two aspects of code reuse:
software license and source code.

Firstly, we conducted an empirical study on Debian 7.5 and a collec-
tion of Java projects to analyze the issue of license inconsistencies. From
the result, we generalized 3 types of license inconsistencies: i) license addi-
tion or removal ii) license upgrade or downgrade, and iii) license change.
Meanwhile, we investigated the causes of these license inconsistencies and
generalized them into 4 reasons: i) author’s modification ii) resolving a
multi-license iii) reuser’s addition to original license, and iv) reuser’s modi-
fication. Among these 4 categories, we consider the last two are potentially
risky which needs further attention. This finding supports our assumption
that license inconsistency brings potential license violation issues. Thus we
call for the attention from developers that they should be careful about
the license inconsistency issues in their own projects. We think that our
proposed method can be a good start point to find out those license incon-
sistency cases. Having a clear clue of the license inconsistency issues would
help the developers/organization avoid potential legal disputes.

Secondly, we investigated the source code change during code reuse.
With a manual analysis on how developers integrate source code from Stack
Overflow into their own projects, we found that it is not uncommon that
developers make modifications to the source code they reuse. The modifi-
cations vary from simple refactoring to a fully rewriting of the algorithm.
These required modifications may indicate potential barriers to the devel-
opers who performs code reuse. With this in mind, we designed a survey
on 453 developers, which aims to find out what developers are suffering
during the reuse process and provide useful insights for a next-generation
Q&A platforms. We analyzed the responses from the participants and gen-
eralized 4 main reasons that hinder code reuse: i) code need to be modified

85

according to the context ii) developers do not comprehend the source code
to be reused iii) low quality of the source code, and iv) reusing source is time
consuming. Further more, we summarized a roadmap for a next-generation
Q&A platforms which is generation in 5 categories: (1) code quality, (2) in-
formation enhancement & management, (3) data organization, (4) license,
and (5) human factor. We believe that these findings give directions to
future research that aim to improve code reuse. Practitioners can use the
roadmap as a guideline to build a next-generation Q&A platforms.

Overall, this dissertation provides an insight into the legal aspect (i.e.,
software license) and the core part (i.e., source code) of code reuse. We
believe that the findings in this dissertation point out some future directions
for researchers who are to improve code reuse and provide some guidelines
for practitioners to create a better platform for code reuse.

4.2 Future Directions

In our first study of license inconsistencies, we discovered the difficulty of
determining the provenance of a source code file. This difficulty prevents
us from distinguish the direction of code reuse, i.e, we do not know whether
the source code in file A was reused from file B, or the other way around.
In other words, when license inconsistency exists, it is difficult to determine
who is to blame for its occurrence. Future research could be conducted to
solve this issue, thus helping narrow down the truly risky license inconsis-
tency cases and their causes.

Our second study of the code reuse from Q&A platforms suggests several
future directions to improve code reuse. For example, studies on improving
the code quality on Q&A platforms would remove the biggest concerns from
the developers; studies on enhancing information and data organization of
Q&A platforms would help creating a platform with richer information
(e.g., API documentation) that could be easily accessed. We believe that
these enhancements would help developers reuse source code from Q&A
platforms more effectively and efficiently.

86

Bibliography

[1] Abdalkareem, R., Shihab, E., and Rilling, J. (2017). What do developers
use the crowd for? a study using Stack Overflow. IEEE Software, 34(2),
53–60.

[2] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., and Schneider,
K. A. (2016). Mining duplicate questions in Stack Overflow. In Proceed-
ings of the 13th International Conference on Mining Software Reposito-
ries (MSR), pages 402–412.

[3] Almeida, D. A., Murphy, G. C., Wilson, G., and Hoye, M. (2017). Do
software developers understand open source licenses? In Proceedings of
the 25th International Conference on Program Comprehension (ICPC),
pages 1–11. IEEE.

[4] Alnusair, A., Rawashdeh, M., Hossain, M. A., and Alhamid, M. F.
(2016). Utilizing semantic techniques for automatic code reuse in software
repositories. In Quality Software Through Reuse and Integration, pages
42–62. Springer.

[5] Alspaugh, T., Asuncion, H., and Scacchi, W. (2009). Intellectual prop-
erty rights requirements for heterogeneously-licensed systems. In Pro-
ceedings of the 17th International Requirements Engineering Conference
(RE2009), pages 24–33.

[6] An, L., Mlouki, O., Khomh, F., and Antoniol, G. (2017). Stack Over-
flow: A code laundering platform? In Proceedings of the 24th IEEE
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 283–293. IEEE.

[7] Anderson, A., Huttenlocher, D., Kleinberg, J., and Leskovec, J. (2013).
Steering user behavior with badges. In Proceedings of the 22nd Interna-
tional Conference on World Wide Web (WWW), pages 95–106. ACM.

[8] Apte, U., Sankar, C. S., Thakur, M., and Turner, J. E. (1990).
Reusability-Based Strategy for Development of Information Systems:
Implementation Experience of a Bank. Technical Report 4.

87

[9] Armaly, A. and McMillan, C. (2016). Pragmatic source code reuse via
execution record and replay. Journal of Software: Evolution and Process,
28(8), 642–664.

[10] Atwood, J. (2009). Attribution required – Stack Overflow blog. https:
//stackoverflow.blog/2009/06/25/attribution-required/. (last
visited: Aug 25, 2017).

[11] Azad, S., Rigby, P. C., and Guerrouj, L. (2017). Generating API call
rules from version history and stack overflow posts. ACM Transactions
on Software Engineering and Methodology (TOSEM), 25(4), 29.

[12] Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P.,
and Lopes, C. (2006). Sourcerer: A search engine for open source code
supporting structure-based search. In Companion to the 21st ACM SIG-
PLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 681–682. ACM.

[13] Barzilay, O. (2011). Example embedding. In Proceedings of the 10th
SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2011, pages 137–144.

[14] Basili, V. R., Briand, L. C., and Melo, W. L. (1996). How reuse
influences productivity in object-oriented systems. Communications of
the ACM , 39(10), 104–116.

[15] Bettenburg, N., Shang, W., Ibrahim, W., Adams, B., Zou, Y., and
Hassan, A. (2009). An empirical study on inconsistent changes to code
clones at release level. In Proceedings of the 16th Working Conference on
Reverse Engineering (WCRE2009), pages 85–94.

[16] Bian, J., Gao, B., and Liu, T.-Y. (2014). Knowledge-Powered Deep
Learning for Word Embedding , pages 132–148. Springer Berlin Heidel-
berg.

[17] Boehm, B. W. (1987). Improving software productivity. Computer ,
20(9), 43–57.

[18] Cavusoglu, H., Li, Z., and Huang, K.-W. (2015). Can gamification mo-
tivate voluntary contributions?: The case of StackOverflow Q&A com-
munity. In Proceedings of the 18th ACM Conference Companion on Com-
puter Supported Cooperative Work & Social Computing , pages 171–174.
ACM.

[19] Chen, C., Gao, S., and Xing, Z. (2016). Mining analogical libraries
in Q&A discussions - incorporating relational and categorical knowledge

88

https://stackoverflow.blog/2009/06/25/attribution-required/
https://stackoverflow.blog/2009/06/25/attribution-required/

into word embedding. In IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 338–348.
IEEE.

[20] Chen, C., Xing, Z., and Wang, X. (2017). Unsupervised software-
specific morphological forms inference from informal discussions. In Pro-
ceedings of the 39th International Conference on Software Engineering
(ICSE), pages 450–461. IEEE.

[21] Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision
for scaled disagreement or partial credit. Psychological bulletin, 70(4),
213.

[22] Cottrell, R., Walker, R. J., and Denzinger, J. (2008). Semi-automating
small-scale source code reuse via structural correspondence. In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (SIGSOFT), pages 214–225. ACM.

[23] Di Penta, M., German, D. M., Guéhéneuc, Y.-G., and Antoniol, G.
(2010). An exploratory study of the evolution of software licensing. In
Proceedings of the 32nd International Conference on Software Engineer-
ing (ICSE2010), pages 145–154.

[24] Feldthaus, A. and Møller, A. (2013). Semi-automatic rename refactor-
ing for javascript. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference On Object Oriented Programming Systems Languages
& Applications, volume 48, pages 323–338. ACM.

[25] Foundation, F. S. (2006). License violations and compliance. https:
//www.fsf.org/licensing/compliance. (Accessed on 01/07/2019).

[26] Free Software Foundation, I. (2007). The gnu general public li-
cense v3.0. http://www.gnu.org/licenses/gpl.html. (Accessed on
12/14/2018).

[27] Gabel, M., Yang, J., Yu, Y., Goldszmidt, M., and Su, Z. (2010). Scal-
able and systematic detection of buggy inconsistencies in source code.
In Proceedings of the 25th International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA2010),
pages 175–190.

[28] Galenson, J., Reames, P., Bodik, R., Hartmann, B., and Sen, K.
(2014). Codehint: Dynamic and interactive synthesis of code snippets.
In Proceedings of the 36th International Conference on Software Engi-
neering , ICSE 2014, pages 653–663.

89

https://www.fsf.org/licensing/compliance
https://www.fsf.org/licensing/compliance
http://www.gnu.org/licenses/gpl.html

[29] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[30] Ganguly, D., Roy, D., Mitra, M., and Jones, G. J. (2015). Word embed-
ding based generalized language model for information retrieval. In Pro-
ceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages 795–798.

[31] Gao, Q., Zhang, H., Wang, J., Xiong, Y., Zhang, L., and Mei, H.
(2015). Fixing recurring crash bugs via analyzing Q&A sites. In Pro-
ceedings of the 30th International Conference on Automated Software
Engineering (ASE), pages 307–318.

[32] German, D., Di Penta, M., Gueheneuc, Y.-G., and Antoniol, G. (2009).
Code siblings: Technical and legal implications of copying code between
applications. In Proceedings of the 6th Working Conference on Mining
Software Repositories (MSR2009), pages 81–90.

[33] German, D., Di Penta, M., and Davies, J. (2010a). Understanding and
auditing the licensing of open source software distributions. In Proceed-
ings of the 18th International Conference on Program Comprehension
(ICPC2010), pages 84–93.

[34] German, D. M. and Hassan, A. E. (2009). License integration patterns:
Addressing license mismatches in component-based development. In Soft-
ware Engineering, 2009. ICSE 2009. IEEE 31st International Conference
on, pages 188–198. IEEE.

[35] German, D. M., Manabe, Y., and Inoue, K. (2010b). A sentence-
matching method for automatic license identification of source code files.
In Proceedings of the 25th International Conference on Automated Soft-
ware Engineering (ASE2010), pages 437–446.

[36] Gharehyazie, M., Ray, B., and Filkov, V. (2017). Some from here,
some from there: Cross-project code reuse in github. In Mining Soft-
ware Repositories (MSR), 2017 IEEE/ACM 14th International Confer-
ence on, pages 291–301. IEEE.

[37] Glaser, B. (2017). Discovery of grounded theory: Strategies for quali-
tative research. Routledge.

[38] Gobeille, R. (2008). The FOSSology project. In Proceedings of the 5th
Working Conference on Mining Software Repositories (MSR2008), pages
47–50.

90

[39] Göde, N. and Harder, J. (2011). Oops! . . . I changed it again.
In Proceedings of the 5th International Workshop on Software Clones
(IWSC2011), pages 14–20.

[40] Göde, N. and Koschke, R. (2011). Frequency and risks of changes to
clones. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE2011), pages 311–320.

[41] Gu, X., Zhang, H., Zhang, D., and Kim, S. (2016). Deep API learning.
In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 631–642. ACM.

[42] Gwet, K. et al. (2002). Inter-rater reliability: dependency on trait
prevalence and marginal homogeneity. Statistical Methods for Inter-Rater
Reliability Assessment Series, 2, 1–9.

[43] Higo, Y. and Kusumoto, S. (2014). MPAnalyzer: A tool for finding
unintended inconsistencies in program source code. In Proceedings of
the 29th International Conference on Automated Software Engineering
(ASE2014), pages 843–846.

[44] Hua, L., Kim, M., and McKinley, K. S. (2015). Does automated refac-
toring obviate systematic editing? In IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering (ICSE), volume 1, pages
392–402. IEEE.

[45] Initiative, O. S. (????). The 2-clause bsd license. https://
opensource.org/licenses/BSD-2-Clause. (Accessed on 12/14/2018).

[46] Jones, T. C. (1984). Reusability in Programming: A Survey of the
State of the Art. IEEE Transactions on Software Engineering , SE-10(5),
488–494.

[47] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M.,
and Damian, D. (2014). The promises and perils of mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repos-
itories (MSR), pages 92–101. ACM.

[48] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: A multi-
linguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering , 28(7), 654–670.

[49] Knight, J. C. and Dunn, M. F. (1998). Software quality through
domain-driven certification. Annals of Software Engineering , 5(1), 293.

[50] Krinke, J. (2007). A study of consistent and inconsistent changes to
code clones. In Proceedings of the 14th Working Conference on Reverse
Engineering (WCRE2007), pages 170–178.

91

https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause

[51] Krueger, C. W. (1992). Software reuse. ACM Computing Surveys
(CSUR), 24(2), 131–183.

[52] Krumia (2014). Introduce an “obsolete answer" vote.
https://meta.stackoverflow.com/questions/272651/
introduce-an-obsolete-answer-vote. (last visited: Aug 25,
2017).

[53] Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent convolutional
neural networks for text classification. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pages 2267–2273. AAAI Press.

[54] Latoza, T. T. D. and van der Hoek, A. (2016). Crowdsourcing in Soft-
ware Engineering : Models , Opportunities , and Challenges. Technical
report.

[55] Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., and
Morisio, M. (2009). Development with off-the-shelf components: 10 facts.
IEEE Software, 26(2), 80–87.

[56] Liu, P., Joty, S. R., and Meng, H. M. (2015). Fine-grained opinion min-
ing with recurrent neural networks and word embeddings. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1433–1443. The Association for Computational
Linguistics.

[57] Lv, F., Zhang, H., Lou, J.-g., Wang, S., Zhang, D., and Zhao, J.
(2015). CodeHow: Effective code search based on API understanding and
extended boolean model. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages
260–270. IEEE.

[58] Madison, M. J. (2003). Reconstructing the software license. Loy. U.
Chi. Lj , 35, 275.

[59] Manabe, Y., Hayase, Y., and Inoue, K. (2010). Evolutional analysis of
licenses in FOSS. In Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution and International Workshop on Principles of Software
Evolution (IWPSE-EVOL2010), pages 83–87.

[60] Manabe, Y., German, D., and Inoue, K. (2014). Analyzing the rela-
tionship between the license of packages and their files in free and open
source software. In Proceedings of the 10th International Conference on
Open Source Systems (OSS2014), pages 51–60.

[61] McIlroy, M. D., Buxton, J., Naur, P., and Randell, B. (1968). Mass-
produced software components. In Proceedings of the 1st International
Conference on Software Engineering (ICSE1968), pages 88–98.

92

https://meta.stackoverflow.com/questions/272651/introduce-an-obsolete-answer-vote
https://meta.stackoverflow.com/questions/272651/introduce-an-obsolete-answer-vote

[62] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu, C.
(2011). Portfolio: Finding relevant functions and their usage. In Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE), pages 111–120.

[63] Meng, N., Kim, M., and McKinley, K. S. (2011). Systematic editing:
Generating program transformations from an example. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 329–342.

[64] Meng, N., Kim, M., and McKinley, K. S. (2013). Lase: locating and
applying systematic edits by learning from examples. In Proceedings of
the 2013 International Conference on Software Engineering , pages 502–
511. IEEE.

[65] Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., Tamrawi, A., Nguyen,
H. V., Al-Kofahi, J., and Nguyen, T. N. (2012). Graph-based pattern-
oriented, context-sensitive source code completion. In Proceedings of the
34th International Conference on Software Engineering (ICSE), pages
69–79.

[66] Ponzanelli, L., Bacchelli, A., and Lanza, M. (2013). Leveraging crowd
knowledge for software comprehension and development. In Proceedings
of the 17th European Conference on Software Maintenance and Reengi-
neering (CSMR), pages 57–66. IEEE.

[67] Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., and Lanza,
M. (2014a). Mining stackoverflow to turn the IDE into a self-confident
programming prompter. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 102–111. ACM.

[68] Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., and Lanza, M.
(2014b). Prompter: A self-confident recommender system. In ICSME ,
pages 577–580.

[69] Ponzanelli, L., Mocci, A., Bacchelli, A., and Lanza, M. (2014c). Un-
derstanding and classifying the quality of technical forum questions. In
Proceedings of the 14th International Conference on Quality Software
(QSIC), pages 343–352.

[70] Raychev, V., Vechev, M., and Yahav, E. (2014). Code completion
with statistical language models. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 419–428.

[71] Reja, U., Manfreda, K. L., Hlebec, V., and Vehovar, V. (2003). Open-
ended vs. close-ended questions in web questionnaires. Developments in
Applied Statistics (Metodološki zvezki), 19, 159–77.

93

[72] Rigby, P. C. and Robillard, M. P. (2013). Discovering essential code
elements in informal documentation. In Proceedings of the 2013 Inter-
national Conference on Software Engineering (ICSE), pages 832–841.
IEEE.

[73] Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming , 74(7), 470–495.

[74] Sasaki, Y., Yamamoto, T., Hayase, Y., and Inoue, K. (2010). Finding
file clones in FreeBSD ports collection. In Proceedings of the 7th Working
Conference on Mining Software Repositories (MSR2010), pages 102–105.
IEEE.

[75] Seaman, C. B. (1999). Qualitative methods in empirical studies of soft-
ware engineering. IEEE Transactions on Software Engineering (TSE),
25(4), 557–572.

[76] Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L.,
Guo, Y., and Godfrey, S. (2008). Defect categorization: making use of
a decade of widely varying historical data. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement , pages 149–157. ACM.

[77] Searchcode (2016a). searchcode - API. https://searchcode.com/
api/. (last visited: Aug 25, 2017).

[78] Searchcode (2016b). searchcode - Homepage. https://searchcode.
com/. (last visited: Aug 25, 2017).

[79] Sillito, J., Maurer, F., Nasehi, S. M., and Burns, C. (2012). What
makes a good code example?: A study of programming Q&A in Stack-
Overflow. In Proceedings of the 2012 IEEE International Conference on
Software Maintenance (ICSM), pages 25–34.

[80] Singh, P. V., Tepper, D. A., and Phelps, C. (2012). Networks, Social
Influence, and the Choice Among Competing Innovations: Insights from
Open Source Software Licenses. pages 1–22.

[81] Sojer, M., Henkel, J., Wade, M., and Crowston, K. (2010). Code Reuse
in Open Source Software Development: Quantitative Evidence, Drivers,
and Impediments. Technical report.

[82] Stack Exchange (2015). The MIT license — clarity on using code on
Stack Overflow and Stack Exchange. https://meta.stackexchange.
com/q/271080/337948. (last visited: Aug 25, 2017).

94

https://searchcode.com/api/
https://searchcode.com/api/
https://searchcode.com/
https://searchcode.com/
https://meta.stackexchange.com/q/271080/337948
https://meta.stackexchange.com/q/271080/337948

[83] Stack Exchange (2017). All sites - Stack Exchange. https://
stackexchange.com/sites. (last visited: Aug 25, 2017).

[84] Stack Overflow (2014). Feedback requested:
Runnable code snippets in questions and answers.
https://meta.stackoverflow.com/questions/269753/
feedback-requested-runnable-code-snippets-in-questions-and-answers.
(last visited: Aug 25, 2017).

[85] Stack Overflow (2016). Stack Overflow developer survey results 2016.
http://stackoverflow.com/research/developer-survey-2016.
(last visited: Aug 25, 2017).

[86] Stack Overflow (2017). Stack Overflow - Homepage. https://
stackoverflow.com/. (last visited: Aug 25, 2017).

[87] Standish, T. A. (1984). An essay on software reuse. IEEE Transactions
on Software Engineering , SE-10(5), 494–497.

[88] Tan, G. (2016). A collection of well-known software failures. http:
//www.cse.psu.edu/~gxt29/bug/softwarebug.html. (Accessed on
12/05/2018).

[89] Treude, C. and Robillard, M. P. (2016). Augmenting API documen-
tation with insights from Stack Overflow. In Proceedings of the 38th
International Conference on Software Engineering (ICSE), pages 392–
403. ACM.

[90] Treude, C. and Robillard, M. P. (2017). Understanding stack overflow
code fragments. In 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017 , pages 509–513.

[91] Treude, C., Barzilay, O., and Storey, M.-A. (2011). How do program-
mers ask and answer questions on the web? (NIER track). In Proceedings
of the 33rd International Conference on Software Engineering (ICSE),
pages 804–807.

[92] Tuunanen, T., Koskinen, J., and Kärkkäinen, T. (2009). Automated
software license analysis. Automated Software Engineering , 16(3-4), 455–
490.

[93] Vasilescu, B., Filkov, V., and Serebrenik, A. (2013). StackOverflow and
GitHub: Associations between software development and crowdsourced
knowledge. In Proceedings of 2013 International Conference on Social
Computing (SocialCom), pages 188–195. IEEE.

95

https://stackexchange.com/sites
https://stackexchange.com/sites
https://meta.stackoverflow.com/questions/269753/feedback-requested-runnable-code-snippets-in-questions-and-answers
https://meta.stackoverflow.com/questions/269753/feedback-requested-runnable-code-snippets-in-questions-and-answers
http://stackoverflow.com/research/developer-survey-2016
https://stackoverflow.com/
https://stackoverflow.com/
http://www.cse.psu.edu/~gxt29/bug/softwarebug.html
http://www.cse.psu.edu/~gxt29/bug/softwarebug.html

[94] Vassallo, C., Panichella, S., Di Penta, M., and Canfora, G. (2014).
CODES: Mining source code descriptions from developers discussions.
In Proceedings of the 22nd International Conference on Program Com-
prehension (ICPC), pages 106–109.

[95] Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., Germán,
D. M., and Poshyvanyk, D. (2015a). License usage and changes: A large-
scale study of java projects on github. In The 23rd IEEE International
Conference on Program Comprehension, ICPC 2015 .

[96] Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German,
D. M., and Poshyvanyk, D. (2015b). When and why developers adopt
and change software licenses. In Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference on, pages 31–40. IEEE.

[97] Wang, H., Lu, Y., and Zhai, C. (2010). Latent aspect rating analysis
on review text data: A rating regression approach. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 783–792.

[98] Wang, S., Lo, D., and Jiang, L. (2014a). Active code search: Incorpo-
rating user feedback to improve code search relevance. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE), pages 677–682.

[99] Wang, S., Lo, D., Vasilescu, B., and Serebrenik, A. (2014b). EnTagRec:
An enhanced tag recommendation system for software information sites.
In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 291–300.

[100] Wang, S., Lo, D., and Jiang, L. (2016a). Autoquery: automatic
construction of dependency queries for code search. Automated Software
Engineering , 23(3), 393–425.

[101] Wang, S., Lo, D., Vasilescu, B., and Serebrenik, A. (2017a). EnTa-
gRec ++: An enhanced tag recommendation system for software infor-
mation sites. Empirical Software Engineering .

[102] Wang, S., Chen, T.-H., and Hassan, A. E. (2017b). Understanding the
factors for fast answers in technical Q&A websites. Empirical Software
Engineering , pages 1–42.

[103] Wang, X., Pollock, L. L., and Vijay-Shanker, K. (2014c). Automatic
segmentation of method code into meaningful blocks: Design and evalu-
ation. Journal of Software: Evolution and Process, 26(1), 27–49.

96

[104] Wang, X., Pollock, L. L., and Vijay-Shanker, K. (2017c). Automat-
ically generating natural language descriptions for object-related state-
ment sequences. In IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Aus-
tria, February 20-24, 2017 , pages 205–216.

[105] Wang, Y., Feng, Y., Martins, R., Kaushik, A., Dillig, I., and Reiss,
S. P. (2016b). Hunter: next-generation code reuse for java. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering , pages 1028–1032. ACM.

[106] Wang, Z., Hamza, W., and Florian, R. (2017d). Bilateral
multi-perspective matching for natural language sentences. CoRR,
abs/1702.03814.

[107] Wikipedia (????). Oracle america, inc. v. google, inc.
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v.
_Google,_Inc.?oldformat=true. (Accessed on 01/07/2019).

[108] Wong, E., Yang, J., and Tan, L. (2013). Autocomment: Min-
ing question and answer sites for automatic comment generation. In
IEEE/ACM 28th International Conference on Automated Software En-
gineering (ASE), pages 562–567. IEEE.

[109] Wong, T.-L., Lam, W., and Wong, T.-S. (2008). An unsupervised
framework for extracting and normalizing product attributes from mul-
tiple web sites. In Proceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 35–42.

[110] Wu, Y., Manabe, Y., Kanda, T., German, D. M., and Inoue, K.
(2015). A method to detect license inconsistencies in large-scale open
source projects. In Proceedings of the 12th Working Conference on Min-
ing Software Repositories (MSR2015), pages 324–333.

[111] Wu, Y., Wang, S., Bezemer, C.-P., and Inoue, K. (2017). Online
appendix of manuscript "How Do Developers Utilize Source Code from
Stack Overflow?". https://zenodo.org/record/1116508.

[112] Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., and Xing, Z.
(2017). What do developers search for on the web? Empirical Software
Engineering .

[113] Xin, X., Lingfeng, B., David, L., Zhenchang, X., Ahmed, E. H., and
Shanping, L. (2017). Measuring program comprehension: A large-scale
field study with professionals. IEEE Transactions on Software Engineer-
ing (TSE), 99(26).

97

https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.?oldformat=true
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.?oldformat=true
https://zenodo.org/record/1116508

[114] Yellin, D. M. and Strom, R. E. (1997). Protocol specifications and
component adaptors. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(2), 292–333.

[115] Yin, P. and Neubig, G. (2017). A syntactic neural model for general-
purpose code generation. CoRR, abs/1704.01696.

[116] Yu, J., Zha, Z.-J., Wang, M., and Chua, T.-S. (2011). Aspect ranking:
Identifying important product aspects from online consumer reviews. In
Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies - Volume 1 , pages
1496–1505.

[117] Zagalsky, A., German, D. M., Storey, M.-A., Teshima, C. G., and
Poo-Caamaño, G. (2017). How the R community creates and curates
knowledge: an extended study of Stack Overflow and mailing lists. Em-
pirical Software Engineering .

[118] Zhang, H., Shi, B., and Zhan, L. (2010). Automatic checking of license
compliance. In Software Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1–3. IEEE.

[119] Zhang, W. E., Sheng, Q. Z., Lau, J. H., and Abebe, E. (2017). Detect-
ing duplicate posts in programming qa communities via latent semantics
and association rules. In Proceedings of the 26th International Conference
on World Wide Web (WWW), pages 1221–1229.

[120] Zhang, Y., Lo, D., Xia, X., and Sun, J.-L. (2015). Multi-factor dupli-
cate question detection in Stack Overflow. Journal of Computer Science
and Technology , 30(5), 981–997.

[121] Zhao, L. and Li, C. (2009). Ontology Based Opinion Mining for Movie
Reviews, pages 204–214. Springer Berlin Heidelberg, Berlin, Heidelberg.

[122] Zhou, P., Liu, J., Yang, Z., and Zhou, G. (2017). Scalable tag rec-
ommendation for software information sites. In Proceedings of the 24th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 272–282. IEEE.

98

Appendix

Below are the questions and options in our online survey. Single-selection
options are marked with circle marks (◦) in front; multi-selection options are
marked with box marks (2) in front. When participants choose the option
“Other,” they are allowed to input a free text as an additional answer.

Part I
1. How many years of software engineering experience do you have?
◦ 1 ◦ 2 ◦ 3 ◦ 4
◦ 5 ◦ 6 ◦ 7 ◦ 8
◦ 9 ◦ 10+
2. What type of project(s) are you working on?
2 Open source 2 Personal 2 Industrial 2 Academic
2 Other
3. Which programming language(s) do you use in your projects?
2 Java 2 C/C++ 2 C# 2 Python
2 Visual Basic .Net 2 JavaScript 2 Assembly 2 PHP
2 Perl 2 Ruby 2 Other
4. How often do you use Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never
5. What do you use Q&A platforms for?
2 Learning new techniques/methodologies
2 Refreshing the knowledge of old techniques/methodologies
2 Solving a specific programming issue
2 Finding references that I can refer to in my source code to make future
maintenance easier
2 Answering questions
2 Other
6. Which Q&A platforms do you use to look for solutions to
programming-related issues?
2 Stack Overflow
2 Quora
2 Product-specific support forums

99

2 Language-specific support forums
2 I do not use Q&A platforms for this purpose
2 Other
7. Have you ever reused source code from a Q&A platform?
◦ Yes ◦ No

Part II
8. How often do you *reuse* source code from Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never
9. How often do you *reimplement* source code from Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never
10. If you prefer reimplementing the source code over reusing existing
code, why?
2 Code should be written in relation to the context.
2 I don’t want to reuse source code that I don’t fully comprehend.
2 The quality of the existing source code is too low.
2 Re-implementing the source code takes less time than reusing.
2 Other
11. What do you consider the most important factors when deciding
when to reuse code from a Q&A platform?
2 Correctness (i.e., bug-free)
2 Performance (i.e., efficient)
2 Readability (i.e., easy to read/understand)
2 Simplicity (i.e., less lines of code)
2 Compatibility (e.g, support more platforms)
2 Whether the answer is accepted by the questioner.
2 Whether the answer has the highest number of upvotes.
2 Other
12. Which aspects cause you difficulty when reusing source code from
Q&A platforms?
2 Syntax errors need to be fixed to make the source code runnable.
2 Bugs (e.g., index out of bounds) need to be fixed.
2 Readability needs to be improved.
2 Performance needs to be improved.
2 The code snippet is not in the programming language I need.
2 Code needs to be adapted to my specific use case.
2 The license terms of the Q&A platform are unclear.
2 Other
13. Do you always refer to the Q&A platform post from which you reused
source code in your documentation or code comments? Why (not)?
◦ Yes, I add a link to the post/answer to show my respects/appreciation
to the original author.

100

◦ Yes, because it is required by the license terms of that Q&A platform
(e.g., CC-BY-SA 3.0 in the case of Stack Overflow).
◦ Yes, to make it easier for future maintenance.
◦ No, I would like to, but always forget.
◦ No, I don’t do that. (Please elaborate the reason below if you could)
◦ Other
14. Are you aware of the license terms of reused source code from a Q&A
platform?
◦ Yes, I fully understand the license terms.
◦ Yes, I know about the existence of such terms, but I am not sure what
obligations I have.
◦ No, I did not know about them, but I would like to learn more about
them.
◦ No, I did not know about them, neither do I care about them.
◦ Other
15. Which license(s) do the projects into which you reused code from a
Q&A platform use?
2 GPL family (any version of LGPL, GPL or AGPL) 2 MIT License
2 Apache License 2 BSD License
2 A proprietary license 2 No license
2 I don’t know 2 Other
16. In general, would you say that the license(s) of these project(s) are
compatible with the license of the Q&A platform from which you reused
source code?
◦ Strongly disagree ◦ Disagree ◦ Neutral
◦ Strongly agree ◦ Agree
17. How important is it to have more detailed information about the
license terms and legal obligations of reusing source code from Q&A
platforms?
◦ Very unimportant ◦ Unimportant ◦ Neutral
◦ Very important ◦ Important

Part III
18. How useful would it be to let other users tag answers on Q&A
platforms with labels that describe the source code in an answer as
’performant’, ’correct’, ’readable’, etc.?
◦ Very unuseful ◦ Unuseful ◦ Neutral
◦ Very useful ◦ Useful
19. If you could give any suggestions (regardless of whether they are
feasible) for a next-generation code Q&A platform, what would you
suggest?

101

